108 Chapter 3 Planning and Testing for Application Deployment
Planning for Server Application Compatibility 109

Chapter 3

Planning and Testing for Application Deployment

[image: image1.wmf]
Deploying applications to computers running the Microsoft® Windows® Server 2003 or Windows® XP Professional operating system requires that you first thoroughly analyze your applications and test them for compatibility with the operating system and your environment.

In This Chapter

82Overview of Testing and Deploying Applications

91Defining Application Deployment Project Scope and Objectives

100Planning for Server Application Compatibility

111Creating an Application Compatibility Test Plan

115Preparing for Application Testing

131Testing for and Resolving Compatibility Problems

169Deploying and Distributing Applications and .Sdb Files

187Additional Resources

Related Information

· For more information about testing, see “Designing a Test Environment” in this book.

· For more information about piloting, see “Designing a Pilot Project” in this book.

Overview of Testing and Deploying Applications

Before you move from your current version of the Microsoft® Windows® operating system to Windows XP Professional or Windows Server 2003, you need to test your applications to ensure that they are compatible with the new operating system. An organization can have as many as several thousand applications installed across distributed networks. Compatibility problems with one or many of these applications can cause costly work stoppages.

Although most applications developed for earlier versions of Windows probably will perform well on the new versions, some applications might behave differently because of new technologies within the new versions. The applications that you need to test to ensure compatibility include core applications that are part of your standard desktop configurations, such as office productivity suites; line-of-business applications, such as enterprise resource-planning suites; administrative tools, such as antivirus, compression, backup, and remote-control applications; and custom tools, such as logon scripts. Low-level applications — such as antivirus applications, kernel-mode drivers, and filter drivers — are especially likely to pose problems. You also need to ensure that your server applications are compatible.

This chapter is designed to help IT professionals in medium to large organizations test and deploy applications. It explains primarily how to test and deploy desktop applications that run on client computers. However, many of the concepts and techniques for application compatibility testing and deployment apply whether an application runs on Windows XP Professional or Windows Server 2003. For specific information about server application compatibility, see “Planning for Server Application Compatibility” later in this chapter.

This chapter does not describe how to test applications that will run on Microsoft® Windows® XP 64‑Bit Edition Version 2003 or the 64‑bit versions of Windows Server 2003 family. Testing 16‑bit and 32‑bit applications on these 64‑bit operating systems is beyond the scope of typical application compatibility testing. This is because the 64‑bit versions of these operating systems do not support 16‑bit applications, and because you must use the x86 emulator, known as WOW64 (Windows32 on Windows64), to run 32‑bit applications on the 64‑bit versions of these operating systems. For more information about porting 32‑bit applications to 64‑bit operating systems, see the Porting 32‑bit Applications link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Application Testing and Deployment Process

Application compatibility testing begins with identifying and prioritizing the applications in use throughout your organization, which helps you determine the objectives and scope of the project. After establishing priorities and examining special considerations for server applications, you can develop the test plan. As you encounter compatibility problems during testing, you need to develop solutions, test them, and then package them for deployment. Figure 3.1 illustrates this process.

Figure 3.1 Application Testing and Deployment Process

[image: image2.wmf]
[image: image3.wmf]
Important

To create distributable application compatibility solutions for Windows XP Professional and Windows Server 2003, you need to download and install the Microsoft Windows Application Compatibility Toolkit. To download the current version of the toolkit, use the Windows Application Compatibility link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources. You can also find the toolkit on the Microsoft® Windows® Server 2003 Deployment Kit companion CD. The Windows Application Compatibility Toolkit cannot be installed on the 64-bit versions of the operating systems.

Application Compatibility Testing Within the Project Life Cycle

Application compatibility testing is an important part of your deployment project. Although application testing takes place during the developing phase of the project, related tasks occur throughout the project life cycle. Figure 3.2 shows the phase of the deployment project during which each of the application compatibility testing and deployment tasks might occur. The time frames are estimations and might vary from deployment to deployment.

Figure 3.2 Application Compatibility Testing Within the Project Life Cycle

[image: image4.wmf]
Application Compatibility Fundamentals

To resolve application compatibility problems, perform the following tasks:

1. Identify the applications that you need to test. This includes creating an inventory of your applications (if you do not already have one) and determining the certification status, level of importance to your organization, and the priority of each application, to help determine the level of testing required.

2. Identify application compatibility problems. This includes testing, and possibly debugging, your applications.

3. Resolve application compatibility problems. This includes identifying and creating application compatibility solutions. It also can include modifying the source code and recompiling applications for which you have the source code.

4. Deploy or distribute applications and solutions. You can use various Windows XP Professional and Windows Server 2003 deployment and distribution tools.

To perform these tasks, you need to understand how application compatibility problems arise, what you can do to resolve the problems, and which tools you can use to plan your application compatibility testing project and to test, fix, and deploy applications.

Common Compatibility Problems

An application written specifically for a different version of Windows — especially for the Microsoft® Windows® 95, Windows® 98, or Windows® Millennium Edition (Windows Me) operating system — might manifest problems for several reasons. Most problems occur in the following areas.

Setup and installation

Problems can occur when an application copies files and shortcuts to folders that exist on an earlier version of the Windows operating system, but not on Windows XP Professional or Windows Server 2003. Problems also can occur when a program:

· Writes entries directly to the registry without using the Windows Installer or the shell APIs.

· Checks for a specific version of the operating system.

· Does not support hard drives larger than 2 gigabytes (GB).

· Does not support long file names.

· Tries to access hardware directly rather than by calling the appropriate APIs.

Kernel-mode drivers

Problems can occur when a driver tries to perform a task that is allowed in an earlier version of Windows but not in Windows XP Professional or Windows Server 2003. The most common types of programs that exhibit kernel-mode driver problems include antivirus programs, personal firewall programs, disk defragmenting programs, and CD burning programs.

Permissions

Permissions problems can occur when an application tries to access areas of the file system or registry that are accessible by all users and applications in an earlier version of Windows but are no longer accessible in Windows XP Professional and Windows Server 2003. In Windows XP Professional and Windows Server 2003, user accounts can write only to the following locations:

· The registry key HKEY_CURRENT_USER, except its subkeys \Software\Policies and \Software\Microsoft\Windows\CurrentVersion\Policies

· The user’s own user profile folders

· Shared Documents folders

· Any folder that the user creates from the root of the system hard disk

If a user tries to write to any other location, an error occurs.

Heap management

Heap management problems can occur because Windows XP Professional and Windows Server 2003 immediately detect problems that frequently took some time to appear in earlier versions of Windows.

In addition, application compatibility problems can arise because of the following changes to existing features, and the addition of new features, in Windows XP Professional and Windows Server 2003:

· Windows File Protection. This feature prevents applications from replacing system files. Earlier versions of Windows allowed applications to replace shared system files during installation, which frequently caused problems ranging from application errors to an unstable operating system. Windows File Protection verifies that protected system files are the correct Microsoft version and restores the correct version when a file is replaced.

· Enumeration of hardware devices. Some hardware devices are no longer supported, which means they are not detected or enumerated during startup. This might cause problems for applications that expect a device to be present.

· Enumeration of fonts. The list of fonts has changed. Because registry keys have been added to support internationalization, the operating system might not provide applications with the font choices that the application expects.

· Windows Messaging Service. Applications that expect the operating system to provide Windows Messaging Service (WMS) will not find it.

· File input/output security. Security has been enhanced for file input and output. Applications that use file filters, such as antivirus programs, might lose significant functionality.

· Privileged instructions. Use of privileged instructions is more restrictive. A privileged instruction is an operating system call that is executed in kernel mode rather than in user mode. An application might shut down unexpectedly if it uses privileged instructions such as cli, sti, in, or out. At other times, it might generate access violations that can be ignored, allowing the application to continue running without consequence.

Application Compatibility Solutions

Windows XP Professional and Windows Server 2003 resolve application compatibility problems by dynamically matching applications with solutions. The matching mechanism is controlled by a dynamic-link library (DLL) that starts and runs the matching mechanism whenever a user installs or runs an application. The matching mechanism is transparent and has a minimal effect on the performance of the operating system or installed applications.

To match applications with solutions, the matching mechanism relies on several databases. The databases contain a list of applications that have known problems and instructions for solving those problems. The databases are saved in the systemroot\AppPatch folder on Windows XP Professional and Windows Server 2003.

Three types of application compatibility databases are available: migration databases, prepackaged databases, and custom databases. The files containing the migration databases have an .inf extension; the files containing the prepackaged and custom databases have an .sdb extension. Throughout this chapter the term .sdb file is used to refer to prepackaged and custom application compatibility databases.

Migration databases

These databases, which are provided by Microsoft, are used during an operating system upgrade to determine whether an application has compatibility problems, and to warn users about these compatibility problems if they prevent the application from running on the new operating system. Two migration databases are provided — one for checking applications that run on Windows 95, Windows 98, and Windows Me, and one for checking applications that run on the Microsoft® Windows NT® and Microsoft® Windows® 2000 operating systems. Migration databases have an .inf file name extension.

Prepackaged databases

These databases also are provided by Microsoft, and are used when an application installs or runs, to determine whether the application has compatibility problems and to provide solutions to those problems. Prepackaged databases have the .sdb file name extension.

Prepackaged databases can contain any of the following solutions:

· An application compatibility fix. This is a segment of code that replaces a problematic function call with a function call that is compatible with Windows XP Professional or Windows Server 2003. This ensures that the operating system returns the result that the application expects.

· An application compatibility mode. This is a collection of application compatibility fixes that, together, emulate a specific operating system environment. For example, a Windows 95 application compatibility mode contains approximately 50 of the most common application compatibility fixes that applications designed to run on Windows 95 need in order to run on Windows XP Professional or Windows Server 2003.

· An Application Help message. This is a message that is displayed when a user installs or runs an application that is incompatible with the operating system, and an application compatibility fix or mode is not available or effective. An Application Help message can warn a user about an incompatibility but still let the user install or run the incompatible application, or it can block the user from installing or running the application.

Custom databases

These databases are created by you, and can contain the same types of solutions as the prepackaged databases — application compatibility fixes, application compatibility modes, and Application Help messages. The difference is that these databases contain solutions for applications that are not addressed in the prepackaged databases. You can give a custom database any name, but it must have the .sdb file name extension. You also can save a custom database anywhere on a computer, but it is usually most convenient and efficient to save your custom databases in a subfolder in the systemroot\AppPatch folder (for example, systemroot\AppPatch\Custom).xe "aa"\\€PDPCA_APPA.doc-1024
In addition to the databases, the matching mechanism relies on several .dll files. These .dll files contain the code segments that run when an application requires an application compatibility fix or mode. These files begin with the letters “ac,” and are installed by the operating system in the systemroot\AppPatch folder.

Table 3.1 describes all of the application compatibility databases that are prepackaged by Microsoft. The .inf files are stored on the Windows XP Professional and Windows Server 2003 operating system CDs. The .sdb files are stored in the systemroot\AppPatch folder.

Table 3.1 Application Compatibility Databases

	File
	Description

	MigDB.inf
	Migration database that contains a list of Windows 95, Windows 98, and Windows Millennium Edition applications that are incompatible with Windows XP Professional or Windows Server 2003.

	NTCompat.inf
	Migration database that contains a list of applications that are designed to run on the Microsoft® Windows NT® Server 4.0 and Windows 2000 operating systems and are incompatible with Windows XP Professional or Windows Server 2003.

	Apphelp.sdb
	Prepackaged database that contains a list of third-party applications that have compatibility problems and associated Application Help messages. You can add third-party applications and custom Application Help messages to this database, but you cannot change or delete the existing list of names and Application Help messages.

	Sysmain.sdb
	Prepackaged database that contains a list of third-party applications that have compatibility problems and their associated application compatibility fixes and modes. You cannot change or delete the information in this database, but you can use the application compatibility fixes and modes that it contains to create custom databases.

	Drvmain.sdb
	Prepackaged database that contains a list of device drivers that have compatibility problems and their associated Application Help messages.

	Msimain.sdb
	Prepackaged database that contains a list of Windows Installer packages (.msi files) that have compatibility problems and their associated Application Help messages.

Application Compatibility Tools

Microsoft provides a variety of tools and features to help you to plan your application compatibility testing project and to test, fix, and deploy applications. These tools and features are provided for each of the four major phases in the overall application compatibility testing process: planning, testing, resolving, and deploying.

Planning tools

These include Microsoft Application Compatibility Analyzer, Microsoft® Systems Management Server (SMS), Windows Catalog, and Windows Upgrade Advisor. Use Application Compatibility Analyzer, Windows Catalog, and Windows Upgrade Advisor to collect information about the applications in your organization and to identify applications that are known to have compatibility problems. Use SMS to create a software inventory.

Testing tools

These include Microsoft Application Verifier and debugging tools. Use these tools to create a test environment for identifying hard-to-find application compatibility, stability, and security problems. Testing tools also include Windows Upgrade Advisor and the Windows Catalog, which identify applications that have already been tested and certified for use with Windows XP Professional and Windows Server 2003.

Resolution tools

These include Microsoft Compatibility Administrator, the Program Compatibility Wizard, and the Compatibility property sheet. You can use Compatibility Administrator to apply compatibility modes and fixes to custom .sdb files, which you can distribute throughout your organization. The Program Compatibility Wizard and the Compatibility property sheet are ideal for resolving compatibility problems on a stand-alone computer (a computer that is not connected to a domain or a network).

Deployment tools

These include automated installation tools, such as the System Preparation tool (Sysprep) and Remote Installation Services (RIS), and software management tools, such as Group Policy Software Installation and logon scripts. You can use these tools to deploy applications and .sdb files during an operating system rollout, or to distribute applications and .sdb files to computers that already have an operating system installed. Deployment tools also include the Application Compatibility Database Installer (Sdbinst.exe) and the Windows Installer program (Msiexec.exe), both of which are used in conjunction with the deployment and distribution tools to install applications and custom database (.sdb) files. You also can use the Windows Installer Software Development Kit to package applications, application updates, and .sdb files into Windows Installer packages (.msi files).

[image: image5.wmf]
Note

The Program Compatibility Wizard and the Compatibility property sheet are rarely used to address application compatibility issues in a large enterprise. In addition, you cannot use these two tools to resolve issues with kernel-mode drivers; doing so can result in system instability.

Table 3.2 provides a list of common tasks, the tools that you use to perform them, and where those tools can be found.

Table 3.2 Tools for Performing Common Application Compatibility Tasks

	To perform this task…
	Use this tool or feature…
	Available…

	Create a software inventory that is adequate for general deployment planning tasks, including application compatibility testing.
	SMS
	For purchase from Microsoft.

	Create a software inventory that is tailored for application compatibility testing.
	Microsoft Application Compatibility Analyzer
	In the Windows Application Compatibility Toolkit.

	Quickly check the compatibility of applications.
	Windows Catalog

–or–

Windows Upgrade Advisor*
	On the Microsoft Web site. Windows Upgrade Advisor is also included on the Windows XP Professional and Windows Server 2003 operating system CDs.

	Test applications for hard-to-find stability, compatibility, and security problems.
	Application Verifier
	In the Windows Application Compatibility Toolkit.

	Investigate and resolve complex application compatibility problems when you have access to the application’s source code.
	Microsoft Debugging Tools for Windows
	On the Microsoft Web site.

	Quickly resolve common application compatibility problems on a stand-alone computer.
	Program Compatibility Wizard

–or–

Compatibility property sheet
	In Windows XP Professional and Windows Server 2003.

	Resolve application compatibility problems by creating a custom application compatibility database (.sdb file).
	Compatibility Administrator
	In the Windows Application Compatibility Toolkit.

	Install and register custom application compatibility files and .sdb files on destination computers.
	Application Compatibility Database Installer (Sdbinst.exe)
	In Windows XP Professional and Windows Server 2003.

	Create a Windows Installer package (.msi file).
	Windows Installer Software Development Kit
	On the Microsoft Web site.

(continued)

Table 3.2 Tools for Performing Common Application Compatibility Tasks (continued)

	To perform this task…
	Use this tool or feature…
	Available…

	Install a Windows Installer package (.msi file) on a destination computer.
	Windows Installer tool (Msiexec.exe)
	In Windows XP Professional and Windows Server 2003.

	Deploy applications and .sdb files during an operating system rollout.
	Windows System Preparation tool (Sysprep)

-or-

Unattended installation answer file (Unattend.txt)

-or-

Remote Installation Services (RIS)
	On the Windows XP Professional and Windows Server 2003 operating system CDs.

	Distribute applications and .sdb files after an operating system rollout.
	Group Policy Software Installation tool

-or-

Logon scripts

-or-

Software Update Services (SUS)

-or-

SMS
	All tools except for SMS are included in Windows XP Professional and Windows Server 2003. SMS is available for purchase from Microsoft.

*Windows Upgrade Advisor is used rarely in enterprise environments, although it is a viable method of checking the compatibility of an application.

For more information about planning tools, see “Generating an Application Inventory” later in this chapter. For more information about testing tools, see “Testing with Windows Application Verifier” later in this chapter. For more information about resolution tools, see “Applying and Testing Solutions with Compatibility Administrator” later in this chapter. For more information about deployment tools, see “Deploying and Distributing Applications and .Sdb Files” later in this chapter.

Defining Application Deployment Project Scope and Objectives

The fundamental objective of any application compatibility testing and deployment project is to successfully deploy applications that are compatible with the new operating system. To plan your application deployment project, you must first define the project scope and objectives. To do this, you need to conduct an inventory of the software currently in use in your organization, and then analyze this information to determine the constraints and risks of the compatibility testing project. You can use this information to begin creating the deployment project plan.xe "aa"\\€PDPCA_APPA.doc-1034
Figure 3.3 illustrates when this step occurs in the application compatibility testing process.

Figure 3.3 Defining Application Deployment Project Scope and Objectives

[image: image6.wmf]
Generating an Application Inventory

To determine the scope of the project, you need to conduct an inventory of the applications used in your organization. If you do not already have a complete software inventory, gather information about both client and server applications that are installed on your computers. Include limited-use applications for special projects within the organization and nonapproved software that will inevitably be present. By having a complete inventory of the applications used in your organization, you can ensure that an otherwise overlooked application is not incompatible.

Several tools are available for creating a software inventory. The Application Compatibility Analyzer, included in the Windows Application Compatibility Toolkit, gathers data that can make your application compatibility testing project easier and more efficient to implement. You also can use SMS or third-party tools to inventory your software. SMS is a robust systems management tool, which, although not designed specifically for application compatibility projects, provides adequate inventory information for application compatibility testing.

Regardless of which tool you use to generate your software inventory, your inventory should include the following information:

· The application name, vendor, and version number

· Service packs or hot fixes that have been applied or are required

· An evaluation of how critical the application is to the success of your business

· The target platform for the application and a description of the client/server components

· The development platform used to create the application

· Historical data, including any known problems or bugs that were identified in previous testing

Some of this information is gathered by the tool that you use to generate the software inventory. You will need to manually collect any additional information that is required. For information about the type of data that a tool collects, see the documentation for the tool.

[image: image7.wmf]
Note

In addition to generating an inventory of the applications currently in use in your organization, be sure to account for applications that you plan to introduce with the new operating system. Because these applications cannot be inventoried, you need to collect information about them manually.

Using the Application Compatibility Analyzer to Generate an Application Inventory

The Application Compatibility Analyzer helps you collect software-related information from the computers in your organization. The Application Compatibility Analyzer tool has two components:

· A console component, the Application Compatibility Analyzer, which you install on the administrator’s computer.

A command-line component, the Microsoft Collector, which you distribute to each computer from which you want to gather an application inventory. The Collector runs in the background on each computer to which it is distributed to collect data about every application on that computer. The Collector records the data in an XML-formatted log file for that computer.

You can compile the data gathered by the Collector into a Microsoft® SQL Server™ database or a Microsoft® Access database by using the Application Compatibility Analyzer console. Then, you can use the Application Compatibility Analyzer console to generate reports that describe the compatibility of the applications in your inventory. To do this, you use the Application Compatibility Analyzer console to compare your software inventory to a database of application compatibility information (known as the application compatibility database). The application compatibility database is maintained by Microsoft, and contains application compatibility information from the Windows Catalog, Microsoft internal testing, and outside parties. It is periodically updated by Microsoft. You can compare your inventory with information in the database directly over the Web, or you can download the compatibility information and add it to your database so you can use the compatibility information offline.

[image: image8.wmf]
Note

If you download the application compatibility database, you can modify the database to include the results of in-house application testing.

The Application Compatibility Analyzer is available for downloading from the Microsoft Web site. See the Windows Application and Customer Experience link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Installing and Using the Application Compatibility Analyzer

You can install the Application Compatibility Analyzer on any computer that is running Windows 2000, Windows XP Professional, or Windows Server 2003. It requires Microsoft® Internet Explorer version 5.5 or later.

Install the Application Compatibility Analyzer on the administrator’s computer on which you will review Application Compatibility Analyzer reports. Then, use Application Compatibility Analyzer to define the database that will store the information that Collector collects as either a SQL Server database or an Access database. If you are compiling Collector logs in an enterprise, a SQL Server database is recommended.

After installing the Application Compatibility Analyzer, distribute the Collector to your client and server computers. You can run the Collector on the Windows 95, Windows 98, Windows Me, Windows 2000® Professional, or Windows XP Professional operating system, and on servers running Windows NT Server 4.0, Windows 2000, or Windows Server 2003. The Collector need not run under an administrator account.

You can configure the Collector using command-line arguments or initialization (.ini) scripts. You can specify which drives, either network or local, and which paths the Collector should search, and whether the Collector should detect server functions. You also can configure the Collector to define the scope of the inventory, and you can specify where to save the log files (by default the log files are stored on the computer on which the Collector is run). For more information about customizing the Collector, see the Collector Help files.

[image: image9.wmf]
Important

Set up a secure share with write-only access on which to save your log files. The log files contain computer information that should be accessible only by administrators.

You can distribute the Collector manually on floppy disks or on CDs, over the network using a network distribution share or a hyperlink in e‑mail, or through Group Policy. These distribution methods all require that end users actively install and run the Collector on their computers. Alternatively, you can automate Collector distribution by using logon scripts or SMS. For information about distributing the Collector, including sample logon scripts, see “Collection Scenarios” in Application Compatibility Analyzer Help.

[image: image10.wmf]
Note

If you plan to use logon scripts to run the Collector, use the /CW switch to configure the Collector to wait for five minutes before starting collection. This reduces the CPU load at startup.

When the Collector finishes collecting information from all of your computers, you can use the Application Compatibility Analyzer console to merge all of the Collector log files into the SQL or Access database that you defined earlier. For more information about merging Collector log files into a database, see “Merger” in Application Compatibility Analyzer Help.

Example: Using the Application Compatibility Analyzer to Generate
an Application Inventory

The following example illustrates how the Application Compatibility Analyzer might be used in a network environment.

A midsized company is preparing to deploy Windows XP Professional to all desktop computers. The organization is divided among three physical locations connected by high-speed data connections. The organization uses the Active Directory® directory service within a single domain, and has created an organizational unit (OU) for each physical location (HQ, East, and West).

On Server1, the IT department creates a shared folder for storing all log files generated by the Collector, with the Universal Naming Convention (UNC) path \\Server1\Analyzer, and another shared folder for storing the Collector executable, with the path \\Server1\Collector. The IT department decides to use a logon script assigned through Active Directory to distribute and run the Collector. Because there are three physical locations represented by three separate OUs within the domain, the organization decides to gather data by OU. To accomplish this, the IT department adds the following lines to the logon script:

Copy \\server1\collector\collector.exe c:\
C:\collector.exe /O \\server1\analyzer /N /E HQ /CW

The first line of code copies the Collector executable program from the shared folder on Server1 to drive C on the client computer. The second line of the code instructs Collector to do the following: send log file output to the shared folder on Server1 that is specified for storing logs (with the /O switch); scan network drives that might be mapped (with the /N switch); mark the data with an “HQ” designation for the HQ OU (with the /E switch); and wait 5 minutes before starting the collection. The IT department can include similar lines for the logon scripts in the East and West OUs, with the exception that the /E switch would define the OU name in each case.

Organizing and Analyzing Inventory Data

After gathering your inventory data into a single database, you can analyze the applications currently installed in your organization. You can begin to determine which applications are compatible with the new operating system and which are not compatible or require special considerations, and you can make decisions about consolidating the application base in your organization.

Checking Application Compatibility

Using the Application Compatibility Analyzer, you can connect to the application compatibility database at Microsoft to determine whether the applications in your organization are compatible with Windows XP Professional or Windows Server 2003. When the Application Compatibility Analyzer tool generates a compatibility report, it automatically accesses the application compatibility database and updates your software inventory with compatibility information. If you use a different tool to generate an inventory, or if you want to check the compatibility of an application that you have not yet deployed, you can use the Windows Catalog instead.

You can use an application’s compatibility rating to assess the level of testing that application requires. If your organization uses an application listed as compatible or as designed for Windows XP Professional or Windows Server 2003 without customization, you need only minimally test the product. However, if you customize applications with macros, templates, or custom tools, you need to thoroughly test those applications.

Checking application compatibility using the Application Compatibility Analyzer

When you use the Application Compatibility Analyzer tool to request compatibility information for an application from the application compatibility database, one of four levels of compatibility is returned:

· Compatible. The application has no known issues.

· Compatible with Issues. The application has one or more minor functionality issues.

· Incompatible. The application’s general functionality fails.

· Unknown. The application’s compatibility is unknown.

The compatibility levels returned by the application compatibility database are combined with the information in your inventory to create a local application compatibility database for your organization. The local compatibility database provides details about the operating systems and scenarios under which the applications were tested. It also contains other useful information, such as the number of computers on which each application is installed and which departments are using which applications. You can use this information to categorize your applications and prioritize them for testing.

For more information about checking application compatibility with the Application Compatibility Analyzer tool, see “Connecting to the Compatibility Database” in Application Compatibility Analyzer Help.

As you find out more about an application, either through your own testing or from the application vendor, you can update its compatibility information in your local compatibility database.

Checking application compatibility using the Windows Catalog

If you gathered your inventory using SMS or a third-party inventory tool, or if you have not yet deployed the application whose compatibility you want to check, you can use the Windows Catalog to check compatibility. In Windows XP Professional or Windows Server 2003, you can open the Windows Catalog by clicking Start, clicking All Programs, and then clicking Windows Catalog. Alternatively, you can use the Windows Catalog link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

If an application is listed as Compatible in the Windows Catalog, either Microsoft or its manufacturer has tested it for compatibility with Windows XP Professional, and it meets specific compatibility criteria. The Windows Catalog also highlights products that are part of the Designed for Windows Logo Program for Windows XP Professional. Products with the Designed for Windows XP logo are specifically created to take advantage of the features of Windows XP Professional, which reduces the number of problems that you might otherwise have in using these applications.

Gathering Additional Application Information

Regardless of which tool you use to generate your inventory, you need to manually collect information that is organization-specific or group-specific for each application. This type of information cannot be collected by an inventory tool, but it is important for creating your test plan.

Talk with representatives from the groups that use each application to document:

· A description of the application’s function.

· The name of the application vendor (if applicable).

· The version number of the application.

· The importance of the application to your organization.

· The current status of the application (in production, under development, no longer used).

· The development platform for the application (if the application was developed internally).

· Contact names and phone numbers for internal contacts and vendors.

· Other information that pertains to the organization or group’s unique use of the application.

· Additional certification or testing that might be necessary to meet government regulations. For example, certain applications used in the development and production of pharmaceuticals must meet certification requirements set by the Food and Drug Administration (FDA). In some cases, if you change the operating system on which the application runs, you might also have to recertify the application.

You can use this information to help prioritize your testing, especially if you have limited resources and are unable to fully test each application.

Consolidating Your Application Base

Review the inventory to see if you can consolidate your organization’s application base. Limiting the applications used in your organization can minimize your testing effort, decrease configuration variability during deployment, and increase the likelihood of a successful deployment.

Look for the following in your inventory:

· Several versions of the same application. Consider updating older applications to newer versions or moving all users to a full-featured version of a particular application. For example, if some of your users use Microsoft® Office 2000 and others use Microsoft® Office XP, you might decide to support only Office XP in the future.

· Redundant applications. If groups in your organization are using different applications to accomplish the same tasks, consider moving everyone to the same application.

· Obsolete applications. Review your inventory for applications that are rarely or never used in your organization, and consider retiring them.

Defining Project Constraints and Risks

Identify the project constraints and risks in order to help your team define the parameters of the application deployment project and develop the project plan.

Defining Project Constraints

To prioritize and define the scope of the application deployment project, gather information about the constraints of your project. Constraints often include:

· Resources. Identify the equipment, software, staff, and space that are available for the project.

· Time. Identify the date by which the application deployment project must be completed, and how the application testing process fits into the larger deployment project.

· Organizational issues. If the project will not involve the entire organization, identify which groups in your organization will be affected by it. Additionally, determine if a particular group in the organization needs the new operating system sooner than others. If so, you might decide to perform a staged rollout.

· Access to developers. Identify applications that were developed in‑house or especially for your organization. Access to the developers of these applications is critical during the testing and issue resolution phases of the project. Such access also can be an invaluable aid with retail applications.

Identifying Risk Factors

By identifying risk factors, you can identify the potential barriers to a successful deployment and assess the cost of failure for each potential blocking issue. With this information in hand, you can create contingency plans to help mitigate or avoid blocking issues. For application compatibility testing, it is important to think about the project risks early in the project rather than later, during the test planning phase.

The main risk for any application testing and deployment project is the business impact of application failure. For business-critical applications, a failure in deployment could have severe financial repercussions for the organization, whereas the failure to properly deploy an application that is used infrequently by a few users might have very little effect. Assess the financial impact that could be caused by a failure at any time during the deployment project.

For information about assessing constraints and risks, see the Microsoft Solutions Framework link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Planning for Server Application Compatibility

Assessing the compatibility of server applications with Windows Server 2003 presents some unique challenges. Because server applications tend to span several servers and to do so in several tiers, generating an application inventory, as well as deploying application compatibility fixes for server applications, can be challenging.

Figure 3.4 illustrates when the compatibility of server applications is assessed in the application compatibility testing process.

Figure 3.4 Planning for Server Application Compatibility

[image: image11.wmf]
Inventory Considerations for Server Applications

Server applications are often tiered applications with different components running on different servers. This can make generating an inventory of these applications more difficult than doing so for client applications, because the various components of the application might not be associated in the inventory. Work with the owners of the servers in your network to manually associate the various components of the applications within your database.

The Application Compatibility Analyzer does not detect Internet Authentication Service (IAS) applications. If your organization has IAS applications, you must gather inventory data about them manually.

Obtaining ISV Support for Server Applications

In large organizations, it is often important to have your Independent Software Vendor (ISV) support all server applications that will be running on the new operating system. Commonly, large organizations check with the ISV to see if there is a patch or upgrade that solves application compatibility problems, rather than create an application compatibility fix themselves.

Alternatively, you can obtain a statement of support from an ISV. A statement of support means that the ISV has designed and tested the application to work well with the new operating system. Microsoft continues to work with ISVs to encourage them to provide statements of support for widely used server applications. You can find ISV statements of support for application compatibility in the Windows Server Catalog, or through the online compatibility database that you can access through the Application Compatibility Analyzer. If no statement of support is posted for your application, contact the ISV and request that they publish one through the Windows Server Catalog.

The Windows Server Catalog also contains the names of applications that are certified for Windows Server 2003. Applications that are certified for Windows Server 2003 must pass a rigorous third-party testing process, which provides the highest assurance that they will run on Windows Server 2003.

For more information about the Windows Server Catalog, see the Windows Server Catalog link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

In some cases, you might find that an ISV does not support the version of the software that you are using in the production environment, but does support a later version. If this is so, consider upgrading to the supported version.

[image: image12.wmf]
Note

An ISV can submit information about an application through the Designed for Windows Logo Program. For more information, see the Designed for Windows Logo Program link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Special Considerations for Server Applications

The following sections provide information about server application compatibility.

Active Directory Considerations

Several changes in the implementation of Active Directory between Windows 2000 and Windows Server 2003 might affect your applications.

Anonymous LDAP operations

In earlier versions of Windows, Active Directory accepted anonymous client requests. With Windows Server 2003, only authenticated users can initiate a Lightweight Directory Access Protocol (LDAP) request against Windows Server 2003–based domain controllers. For more information about anonymous LDAP requests, see the Microsoft Knowledge Base link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources, and search for article number 326690 “Anonymous LDAP Operations to Active Directory Are Disabled on Windows Server 2003 Domain Controllers.”

Microsoft Exchange Server 2000 schema conflicts

The Microsoft® Exchange Server 2000 schema defines several attributes differently from those defined in RFC 2798, “Definition of the inetOrgPerson LDAP Object Class.” The attributes — Secretary, labeledURI, and houseIdentifier — also are defined by the base schema. This deviation can cause problems when you upgrade from Windows 2000 to Windows Server 2003. During the upgrade to Windows Server 2003, the ldapDisplayNames values for these attributes are renamed to permit the upgrade to succeed, causing duplicate names. This renaming does not cause problems with the functioning of Active Directory or the operating system, because the names are not used in this context. However, you might have an application that needs to access these values, which will be inaccessible.

This situation is not a problem if:

· You add the Windows 2000 InetOrgPerson Kit to a Windows 2000 forest before you run the Windows Server 2003 adprep command.

· You run the Windows Server 2003 adprep command in a Windows 2000 forest before you install Exchange Server 2000.

· You add Exchange Server 2000 to an existing Windows Server 2003 forest.

However, you may encounter problems if:

· You add the Exchange Server 2000 schema to a Windows 2000 forest before you add the InetOrgPerson class from the InetOrgPerson Kit.

· You add the Exchange Server 2000 version of the InetOrgPerson class to a Windows 2000 forest before you run the Windows Server 2003 adprep /forestprep command.

· A Windows 2000 domain controller that contains the Exchange Server 2000 definition of InetOrgPerson does not receive updates to Active Directory after you run InetOrgPerson‑Fix.ldf from the Windows 2000 InetOrgPerson Kit.

For more information, see the Microsoft Knowledge Base link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources and search for article number 314649 “Windows Server 2003 ADPREP Command Causes Mangled Attributes in Windows 2000 Forests That Contain Exchange 2000 Servers,” and 328661 “XADM: Running Exchange 2000 Setup with /Forestprep Switch Produces Error 0XC1037AE6.”

Message Queuing

Several features of previous versions of Microsoft® Message Queuing (MSMQ) have been removed from MSMQ version 3.0, which ships with Windows Server 2003. In addition, one feature has been changed. Consequently, you might need to modify applications that rely on features that are no longer relevant or useful, or that have been superseded by other features.

Feature changes include:

· The MSMQ Exchange connector is no longer supported in Windows XP Professional and Windows Server 2003. It continues to be available for Windows NT Server 4.0 and Windows 2000.

· The Internetwork Packet Exchange (IPX) protocol is not supported in MSMQ 3.0.

· The MSMQ 3.0‑dependent client supports only the MSMQ version 2.0 level of functionality. This means that new MSMQ 3.0 features, such as distribution lists, are not available to MSMQ 3.0‑dependent clients. The alternative is to deploy DCOM-based solutions instead.

If your applications use any of these features, verify that they work with MSMQ 3.0.

For more information about applications and MSMQ, see the “Programming Best Practices with Microsoft Message Queuing Services (MSMQ)” white paper, available through the Message Queuing link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Internet Information Services

Windows Server 2003 includes Internet Information Services (IIS) version 6.0. Changes made in IIS 6.0 might affect your Web applications unless you address the following configuration issues during the installation of Windows Server 2003:

· IIS is not installed by default during a clean installation, except on the Microsoft® Windows® Server 2003, Web Edition, operating system. If you plan to run Web-based applications on other editions of the Windows Server 2003 operating system (Microsoft® Windows® Server 2003, Standard Edition; Windows® Server 2003 Enterprise Edition; or Windows® Server 2003, Datacenter Edition), you must install IIS.

· Active Server Pages (ASP), ASP .NET, Server Extensions (installed and enabled) for the Microsoft® FrontPage® Server Extensions (installed and enabled), Web-based Distributed Authoring and Versioning (WebDAV), and all other Internet Server API (ISAPI) extensions and Common Gateway Interface (CGI) applications by default are not enabled when you enable the Application Server Role in Add/Remove Windows Components. You can install these by using Add/Remove Windows Components, and then enable them in the Web Service Extensions node in IIS Manager.

· If you perform a clean installation of IIS 6.0, IIS 6.0 runs in worker process isolation mode by default. To take advantage of the new security, availability, and scalability features in IIS 6.0, IIS 6.0 must be running in worker process isolation mode. However, for compatibility purposes, you can change the application isolation mode to IIS 5.0 isolation mode if the application must run in the Inetinfo.exe process or Dllhost.exe process, or when the application uses ISAPI filters that perform raw data reads.

For more information about IIS and compatibility problems for Web applications, see “Migrating IIS Web Sites to IIS 6.0” in Deploying Internet Information Services (IIS) 6.0 of this kit (or see “Migrating IIS Web Sites to IIS 6.0” on the Web at http://www.microsoft.com/reskit).

Terminal Server

Because Terminal Server is available for multisession or multiuser use, and because display and keystroke information travels over the network, applications that have certain characteristics might perform poorly with Terminal Server. When planning to host applications with Terminal Server in your organization, establish a set of acceptable performance guidelines and determine through testing whether such applications run better on the user’s local computer or over your intranet. For more information about application compatibility with Windows Server 2003 Terminal Server, see “Hosting Applications with Terminal Server” in Planning Server Deployments of this kit.

For more information about server application compatibility, see the Server Roles: The Application Server link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Internet Explorer Enhanced Security Configuration

To prevent security risks, the default configuration of Internet Explorer has changed in Windows Server 2003. This new default configuration, known as Internet Explorer Enhanced Security Configuration, restricts the ability of a Web site to download files and to run scripts and ActiveX® components. In addition, the Internet Explorer Enhanced Security Configuration disables Internet Explorer’s ability to detect whether a Web site is in the Local intranet zone, which restricts access to such things as: intranet Web sites, Web-based applications that run over the intranet, and files or folders on network shares. The Local intranet zone is one of the four Web content zones, along with Internet, Trusted sites, and Restricted sites.

Prior to the implementation of the Internet Explorer Enhanced Security Configuration, anything that was in the Local intranet zone was considered trustworthy. For example, if Internet Explorer determined that a Web site was in the Local intranet zone, and the Web site requested a user’s credentials, Internet Explorer would automatically pass the credentials to the Web site without prompting the user. Under the Internet Explorer Enhanced Security Configuration, intranet Web sites and universal naming convention (UNC) paths must be explicitly specified in the Local intranet zone or the Trusted sites zone to be considered trustworthy.

Because of the Enhanced Security Configuration settings, some applications might experience problems interacting with Web sites, network resources, and ActiveX components and scripts. These problems can occur when an application is being installed and when an application is running. For example, the Enhanced Security Configuration can prevent an application from being installed properly when the application attempts to download required files from a site that is restricted. Similarly, the Enhanced Security Configuration can prevent an application from running properly when it attempts to use an Internet Explorer feature that has been disabled. In addition, an application might not be able to use a UNC path to access a shared folder across the network.

To overcome these limitations, you can:

· Add trusted sites and UNC paths to the Trusted sites zone or to the Local intranet zone.

· Modify Internet Explorer security settings for a specific content zone or all content zones.

· Disable Internet Explorer Enhanced Security Configuration settings.

If you know that an application requires access to an Internet site that is restricted, you also can request that the application vendor change the application setup program so that the required Web site is added to the Trusted sites zone during installation.

[image: image13.wmf]
Caution

Do not disable the Enhanced Security Configuration settings unless you have no other alternative. Disabling the Enhanced Security Configuration increases the risk of security attacks.

For more information about Enhanced Security Configuration settings, see “Internet Explorer Enhanced Security Configuration” in Help and Support Center for Windows Server 2003.

Testing Applications for Compatibility with the Enhanced
Security Configuration

When a user or an administrator opens Internet Explorer for the first time on Windows Server 2003, a default home page that contains information about the Internet Explorer Enhanced Security Configuration is displayed in the browser window. If the user is not a member of the Administrators group, the home page describes the Enhanced Security Configuration and explains how the user can access a Web site that is not trusted. If the user is a member of the Administrators group, the home page describes the Enhanced Security Configuration in detail and explains how the administrator can modify it. Because OEMs can set a different default home page as part of their system configuration, a warning explaining that the Enhanced Security Configuration is enabled is also displayed in a separate dialog box. Users can permanently dismiss this dialog box.

When users start Internet Explorer directly — for example, by clicking a shortcut to Internet Explorer or by clicking Internet Explorer on the Start menu — these messages provide clear guidance for what to do if a Web site does not display properly or if a network resource cannot be reached. However, if an application starts Internet Explorer, the user might not receive these warnings and, consequently, will not understand why the application is failing or how to resolve the problem.

There are four primary types of problems to look for when you test server applications under the Internet Explorer Enhanced Security Configuration settings.

Sites and UNC paths are not listed in the trusted Web content zone

Look for cases where an application starts Internet Explorer so that the user can view a Web site, download files, or run a Web-based application. If the application cannot access these Web sites, applications, or resources, see if you can resolve the problem by adding the Web site or UNC path to the Trusted sites zone or to the Local intranet zone (if appropriate).

Use of client-side redirection

Look for cases where an application’s online content relies on client-side redirection (for example, an application tries to open a Web page, but then gets routed automatically to a different URL). Client-side redirection is disabled under the Enhanced Security Configuration. For client-side redirection to work properly, the target Web site needs to be added to either the Trusted sites zone or to the Local intranet zone (if appropriate).

Dependency on ActiveX components

Look for cases where an application accesses a Web site that relies on Active X components to display properly, such as a Web site that requires Macromedia Flash or Adobe Acrobat. You need to download and install these types of Web-based applications and ActiveX components on a per-computer basis, as you would do with any other application software.

Use of Internet Explorer features

Although they are not obvious, look for cases where an application relies on Internet Explorer features and components — for example, Install on Demand or multimedia features.

While most applications that rely on Internet Explorer features will work properly, in some cases an application, or some extensible component within an application, might attempt to access an Internet Web site that relies on a script or an ActiveX component. In these cases, if the Web site is not listed in the Trusted sites zone, the script or ActiveX component will not run properly, and the user will be prompted to add the Web site to the Trusted sites zone. You can eliminate the need for user intervention by identifying the scripts and ActiveX components that an application relies on and by deploying those scripts and ActiveX components to your user base, just as you would any application.

Modifying Enhanced Security Configuration Settings

You can modify Enhanced Security Configuration settings manually by using Add or Remove Programs and Internet Options in Control Panel. Usually, you modify settings manually on a single machine when you are testing applications and trying to identify and resolve problems. You also can automate the modification of Enhanced Security Configuration settings during an unattended installation or during an image-based installation with Sysprep by changing answer filesettings. Usually, you automate configuration tasks when you are deploying an operating system and applications to many computers.

Manually Modifying Enhanced Security Configuration Settings

When Enhanced Security Configuration settings are enabled, it reduces the exposure of your server to security attacks from Web sites that are not listed in the Local intranet zone or in the Trusted sites zone. By adding intranet Web sites and UNC paths that you trust to the Local intranet zone, or by adding Internet Web sites to the Trusted sites zone, you can maintain the security of your server computers while allowing access to trusted Web sites.

[image: image14.wmf]
To add Web sites and UNC paths to the Local intranet or Trusted sites zones

5. In Control Panel, double-click the icon for Internet Options.

6. On the Security tab, click Local intranet or Trusted sites, depending on which Web content zone you want to add a Web site or a UNC path to.

7. Click Sites.

8. In the Add this Web site to the zone text box, type the URL of the Web site or UNC path that you want to add, and then click Add.

[image: image15.wmf]
Important

Do not add Internet Web sites to the Local intranet zone. User credentials can be passed to Web sites in the Local intranet zone without notifying the user.

When the Enhanced Security Configuration is enabled, several of the extensibility and security features of Internet Explorer are adjusted to decrease security risks. As a consequence, some scripts, ActiveX components, and other applications might not run. By changing these settings, you can maintain the security of your server computers and still allow certain scripts, ActiveX components, and applications to run.

[image: image16.wmf]
Important

Changing extensibility and security features requires in-depth knowledge and understanding of the consequences and is not recommended.

[image: image17.wmf]
To modify Internet Explorer extensibility and security features

1. In Control Panel, double-click the icon for Internet Options.

2. On the Advanced tab, configure extensibility and security features by selecting or clearing the check box next to the feature.

The Enhanced Security Configuration can be enabled or disabled based on group membership. You can disable the Enhanced Security Configuration for members of the Administrators group (it is enabled by default), and you can enable Enhanced Security Configuration for members of the Users group (it is disabled by default). Usually, you disable the Enhanced Security Configuration for members of the Administrators group only when you are testing applications or when you are configuring a computer prior to putting the computer into a production environment. You should always enable the Enhanced Security Configuration for members of the Administrators group before you put a computer into a production environment.

[image: image18.wmf]
To enable or disable Enhanced Security Configuration

1. In Control Panel, double-click Add or Remove Programs.

2. Click Add/Remove Windows Components.

3. Click Internet Explorer Enhanced Security Configuration, and then click Details.

4. Select the group for which you want to enable or disable Enhanced Security Configuration, and then click OK.

Automating the Modification of Enhanced Security Configuration Settings

There are two ways to modify Enhanced Security Configuration settings during an unattended installation or during an image-based installation with Sysprep: you can add trusted Web sites to the Local intranet zone or to the Trusted sites zone, or you can disable or enable the Enhanced Security Configuration.

Usually, during an automated installation, you do not need to disable the Enhanced Security Configuration. However, there is one case in which you might need to do so. If you are performing image-based installations with Sysprep, and you set up your master installation by performing an unattended installation, you might need to disable the Enhanced Security Configuration so that you can download and install ActiveX components, device drivers, and applications on the master installation. You can then enable the Enhanced Security Configuration during the Factory mode phase of the image-based installation. For more information about automated installations, see “Deploying and Distributing Applications and .SDB Files” later in this chapter.

Adding Web sites to Web content zones during automated installations

You can add Web sites to the Trusted sites zone and the Local intranet zone by configuring the [IEHardening] section of the unattended installation answer file (Unattend.txt) and the Factory mode answer file (Winbom.ini). The unattended installation answer file is used to automate an unattended installation; the Factory mode answer file is used to automate the Factory mode phase of an image-based installation that uses Sysprep. The syntax is the same for both answer files.

You can add Web sites to the Trusted sites zone by using the following entry in the [IEHardening] section of Unattend.txt or Winbom.ini:

TrustedSites = url_1 [, url_2]…

You can add Web sites to the Local Intranet zone by using the following entry in the [IEHardening] section of Unattend.txt or Winbom.ini:

LocalIntranetSites = url_1 [, url_2]…

Enabling or disabling Enhanced Security Configuration during automated installations

You can enable or disable the Enhanced Security Configuration by configuring the [Components] section in the unattended installation answer file (Unattend.txt) and the Factory mode answer file (Winbom.ini). The syntax is the same for both answer files.

You can enable or disable the Enhanced Security Configuration for members of the Administrators group by using the following entry in the [Components] section of Unattend.txt or Winbom.ini:

IEHardenAdmin = On | Off

You can enable or disable Enhanced Security Configuration for members of the Users group by using the following entry in the [Components] section of Unattend.txt or Winbom.ini:

IEHardenUser = On | Off

Creating an Application Compatibility Test Plan

After you have gathered the preliminary information that you need, you can begin creating your application compatibility test plan. Your application compatibility test plan should address all of the issues that are typically addressed in a standard test plan — testing scope and objectives, testing hardware and software requirements, incident tracking procedures, testing scheduling, and so on. Most of these issues are discussed earlier in this chapter and in “Designing a Test Environment” in this book.

You can use this information to create the foundation of your application compatibility test plan. In addition, your application compatibility test plan should:

· Define your testing methodology.

· Identify which applications you need to test.

Figure 3.5 shows when these activities occur in the application compatibility testing process.

Figure 3.5 Creating an Application Compatibility Test Plan

[image: image19.wmf]
For complete information about creating your overall test plan, see “Designing a Test Environment” in this book.

Defining a Test Methodology

Two testing methodologies are useful for testing application compatibility: Windows Fundamentals Test Methodology and Windows Applications Exploratory Test Methodology. Use Windows Fundamentals Test Methodology when your testing team thoroughly understands how an application works and how the groups who use the application expect it to perform. Use Windows Applications Exploratory Test Methodology, a more ad hoc form of testing, when this is not the case.

For more information about Windows Fundamentals testing and Windows Applications Exploratory testing, see “Developing Test Cases” later in this chapter.

Identifying the Applications to Test

Most medium-to-large organizations use so many applications that it is not possible to test them all thoroughly. Consequently, most organizations prioritize the applications they plan to test.

After you have consolidated your application base, so that only the applications that you plan to support with the new operating system are listed, you can prioritize your list based on factors such as whether applications are compatible with Windows Server 2003, how critical they are to your business operations, and the number of users who depend upon them. If the amount of time available for testing or your resources are limited, you can use this prioritized list to decide whether to perform a reduced set of tests on an application or set of applications or whether to not test certain applications at all.

[image: image20.wmf]
Important

If time and resources permit, full testing of all applications is recommended.

The ultimate goal of prioritizing inventoried applications is to identify the core group of applications that must function properly before you begin to roll out the new version of the Windows operating system. Whether you use existing priority categories — such as those you use for disaster recovery — or use the categories suggested here, the categories need to account for this core group of applications.

Use the information in the following sections and any other considerations unique to your particular situation to establish the testing priority for each application.

Prioritizing Application Testing Based on Levels of Compatibility

Using the compatibility information that you obtained through the Application Compatibility Analyzer or the Windows Catalog, you can begin to prioritize the level of application testing. Use the information in Table 3.3 to assist with this task.

Table 3.3 Application Compatibility Priority Categories

	Application’s Compatibility
	Priority Recommendation

	Compatible. The application has been tested and is deemed compatible with Windows XP Professional or Windows Server 2003.
	If the application is used without customization, you might assign it low priority. However, it is recommended that you test compatible applications with your organization’s Active Directoryand Group Policy infrastructure, at a minimum, to ensure that there are no problems in your particular environment.

If you use the application with customizations such as templates or macros, at the very least test the customizations.

	Compatible with Issues. The application typically is compatible, but might have problems when run in certain contexts.
	Consult the Application Details section of the Application Compatibility Analyzer report to identify the situations under which the application has problems, and test the application in those situations. Also test compatible applications with your organization’s Active Directory and Group Policy infrastructure to ensure that there are no problems in your particular environment.

	Incompatible. The application is not compatible with Windows XP Professional or Windows Server 2003.
	If the Application Details section of the Application Compatibility Analyzer report lists fixes for the application, fully test the fixes within your environment.

	Unknown. Either the application or its compatibility with Windows XP Professional or Windows Server 2003 is unknown to Microsoft.
	Fully test the application if you plan to use it in your production environment.

Prioritizing Application Testing Based on How Critical Applications Are to
Your Business

By using the information that you collected from the groups who use the applications, you can prioritize the testing of your applications based on how critical they are to your organization’s business. Use the categories listed in Table 3.4 to prioritize your applications for testing using this criterion.

Table 3.4 Business Priority Categories

	Category
	Impact of Failure
	Priority Recommendations

	Mission-critical. Required in order to collect revenue or to fulfill legal obligations; must be first back online after a disaster occurs.
	High
	Thoroughly test the application in the proposed environment even if it is listed as compatible with the new operating system. Situations in your network or domain infrastructure might cause unforeseen compatibility problems with a mission-critical application, which must be fixed before you deploy the application and new operating system.

	Business-critical. Required in order to run the business infrastructure; should be second back online after a disaster occurs.
	Moderate
	Thoroughly test the application in the proposed environment; however, if an application is listed as compatible, and it has not been customized, you might consider testing only the most important functionality if time is limited.

	Required. Required in order to run the business, but can be offline longer.
	Low
	Thoroughly test the application in the proposed environment; however, if an application is listed as compatible, and it has not been customized, you might consider not testing it if time is limited.

	Other. Not required in order to run the business.
	Very low
	Thorough testing is not necessary for the application.

Prioritizing Application Testing Based on Usage

In prioritizing the applications that you plan to test, consider the impact of the failure of an application on the organization as well as the number of employees who use it.

The report generated by the Application Compatibility Analyzer can tell you how many desktops in the organization each application is installed on. You should test an application that is used by many employees, regardless of whether the application is listed as compatible with the operating system. An example of this type of application is antivirus software that runs on every desktop in the organization.

If only a few employees use an application, but its failure will affect a great number of employees, you should test the application. For example, only a few people in the accounting department use the payroll software. However, if that software does not work properly, all employees might receive their paychecks late.

Preparing for Application Testing

Before application testing can begin, you must prepare your test environment. It is assumed that your organization has a test lab and has established standards and best practices for testing. If this is not the case, see “Designing a Test Environment” in this book for information about designing and setting up your test lab.

To prepare your test environment, you need to set up your test lab for application compatibility testing, install tools for testing applications and for debugging them, gather all of the information and components needed to install and test each application, and develop test cases. Figure 3.6 shows when these tasks occur within the application compatibility testing process.

Figure 3.6 Preparing for Application Testing

[image: image21.wmf]
Setting Up a Test Lab

To determine whether your applications are compatible with Windows XP Professional or Windows Server 2003, you must test them in a lab environment on computers that represent the hardware and software configurations found in your organization. These hardware and software configurations include variables such as all of the operating systems that interoperate in your environment; a mix of clients; the mix of applications to be installed on a single computer; and all the supporting programs, hardware components, and required files. Therefore, the size and complexity of the test lab is determined by the complexity of the applications to be tested and by the network environment where you plan to deploy them.

In addition to duplicating hardware and software configurations, you need to simulate the way that you install and use the applications in your production environment. For example, one organization has a production environment that encompasses thousands of applications running on both Windows NT Server 4.0 and Windows 2000. This organization uses scripted application installations to control the application environment and to prevent unauthorized copying or installation of third-party products. In addition, it standardizes drive mappings for production applications. For example, drive F is reserved for authorized applications for which users have read-only access, drive G is reserved for authorized applications for which users have read and write access, and drive J is reserved for the users’ customized and personal settings, which are retained across sessions.

The test lab includes separate network shares to simulate the drive mappings. Windows XP Professional is installed on all of the test lab computers, except for two baseline computers that have Windows NT Server 4.0 and Windows 2000 installed. Each computer is set up with a core set of applications that are common to all users — such as an office productivity suite, Internet browser, antivirus application, and administrative tools. This core set of applications is pretested for compatibility. Each additional application is then tested using the production application installation script in an environment where the core applications are installed.

Determining a Lab Strategy

Depending on your circumstances and environment, you might decide to test applications in the same lab that you use to test your Windows Server 2003 family deployment. However, if you have the budget and the space, it might be more efficient to have a separate lab for testing applications. For example, if you have many applications, a lab that can be used full-time only for testing applications can make it easier for you to meet your schedule.

The lab that you use for testing applications can be centralized or distributed. If your application owners and testers are widely dispersed, a distributed lab can make resources more readily available during testing and also can help end users become involved in testing. Because distributed labs can require a greater investment in equipment and can be more complex to manage, you might combine both approaches. For example, you might use a large, centralized lab to test critical line-of-business applications that require specialized servers and configurations, and use smaller, distributed labs to test more independent workstation applications. A distributed lab in this case might be as simple as a workstation on a tester’s desk.

When deciding your lab strategy, consider the following factors:

· The number and complexity of applications to be tested

· The location of application testers

· The location of application owners

· Budget and space constraints

· Hardware constraints

· Transportation time and costs

For more information about centralized and distributed testing facilities, see “Designing a Test Environment” in this book.

Configuring the Lab

In the test lab, configure test stations that can be independently managed and scheduled. If enough computers are available, include at least two workstations in each test station to support side-by-side testing. Configure one with the operating system that is currently deployed and one with the new operating system. If you do not have enough computers for each test station, provide a separate group of computers running the current operating system that you can assign as needed.

If you plan to deploy Windows XP Professional or Windows Server 2003 by performing system upgrades rather than clean installations, you need to test how applications behave on the new operating system without reinstalling them. To test, include a workstation that is running your current version of the operating system in each test station, so that you can install each application before you upgrade to the new operating system.

Provide each test station with its own dedicated monitor, keyboard, and mouse. To isolate problems that might occur at a test station, configure each one so that it can be detached quickly from the rest of the test network, for example, by unplugging a cable or making a programmatic change. Provide access to peripheral devices such as printers and scanners, so that testers can test the full functionality of applications.

To facilitate testing, configure the workstations with the following features:

· Enable auditing to monitor permission failures. Because the default settings for Windows XP Professional and Windows Server 2003 are more secure than those in earlier versions of Windows, it is not uncommon for an application to fail because permissions are invalid, especially when the application is installed or when it accesses files. Use the audit log and the event log to identify permissions that need to be changed to allow an application to be installed and to run. For more information about the event log and audit log, see Event Viewer Overview in Help and Support Center for Windows Server 2003.

· Enable crash dump files in Dr. Watson. Crash dump files are binary files that capture the contents of memory when a fatal error occurs. Crash dump files can be loaded into a debugger. For information about configuring Dr. Watson to enable crash dump files, see “Using Dr. Watson” in Help and Support Center for Windows XP Professional.

Mirror the corporate domain structure in the lab, and duplicate user rights for both the domain and the workstations. If you plan to use Group Policy settings in your new environment, implement those policies in the lab.

As a rule, try to duplicate resources such as databases and client/server applications in the lab. If you cannot duplicate some resources, such as mainframe databases, and therefore need to access them over the corporate network, plan how to regulate and control the connection, and devise a quick way to terminate it if that becomes necessary.

As a best practice, rebuild the workstations and, possibly, the servers before testing each application. This approach minimizes the possibility of introducing problems that are not related to application compatibility and helps testers identify problems. To ensure a consistent starting point and to reduce setup time, use scripts or computer images to rebuild the workstations. Your baseline image should include your organization’s core applications so that as you test each application, you also test for possible negative interactions between applications.

For more information about designing and configuring a test lab, see “Designing a Test Environment” in this book.

Installing Application Testing Tools

After setting up the test lab, gather and install application testing tools. Be sure to install any testing tools that you use to automate tests, such as scripts and batch files, as well as the tools in the Windows Application Compatibility Toolkit that are used to apply application compatibility fixes.

Testing Tools

Some testing tools gather or define test data, others run tests, and still others monitor what happens to files and the registry when tests run. The following types of tools automate various steps in the testing process:

· Test automation tools, such as record and playback tools, or test case generators

· Custom scripts, such as installation scripts

· Data extraction tools, such as data warehouse tools

· Test databases, such as those created for regression testing

· Comparison and monitoring tools, such as tools that track file and registry changes

Windows Application Compatibility Toolkit

The Windows Application Compatibility Toolkit, provided by Microsoft, contains Windows Application Verifier, a tool that helps uncover heap problems and other problems that are difficult to locate, and Compatibility Administrator, a tool that applies application compatibility fixes to an application when it runs in order to resolve compatibility problems. The application compatibility fixes help resolve compatibility problems when you do not have access to the source code or when you do not have sufficient time to debug, modify, and implement code changes. Because application compatibility fixes do not modify source code, you must apply them whenever you install an application on a workstation.

Installing Debugging Tools

If the source code for an application is available, and you want to resolve the underlying cause of compatibility problems by modifying the source code, use a debugging tool to investigate the problem. You can use your own debugging tools, or you can use Debugging Tools for Windows.

Debugging Tools for Windows is a collection of kernel-mode and user-mode debuggers provided by Microsoft. Applications run in one of two modes: kernel mode or user mode. Operating system services and some low-level programs, such as device drivers and antivirus applications, run in kernel mode. Kernel-mode applications can access any part of the system. User-mode applications are limited to their allocated area in memory and have restricted access to system interfaces and system data. Most end-user applications run in user mode.

Choose a tool based on the type of application that you need to debug (a kernel-mode or user-mode application) and whether you will use a local or remote computer for debugging. Most of the applications that you need to test for compatibility with Windows XP Professional are user-mode applications; however, you might need to test kernel-mode applications if you develop device drivers or other kernel-mode applications in-house. If you have kernel-mode applications that have been developed by third-party vendors, contact those vendors for upgrades.

Table 3.5 lists each debugger included in Debugging Tools for Windows, telling the processing mode for which it is designed and whether it must be used from the local computer or a remote computer.

Table 3.5 Debugging Tools for Windows

	Tool
	Processing Mode
	Debugging Computer

	Microsoft Console Debugger (CDB)
	User mode
	Local or remote

	Microsoft NT Symbolic Debugger (NTSD)
	User mode
	Local or remote

	Microsoft Windows Debugger (WinDbg)
	User mode and kernel mode
	Local or remote

	Microsoft Kernel Debugger (KD)
	Kernel mode
	Remote

[image: image22.wmf]
Important

Debugging information for all system applications, drivers, and DLLs resides in separate files known as symbol files. By separating debugging information from the application, symbol files allow applications to be smaller and faster, but still permit them to be debugged if the symbol files are installed. If you use a Microsoft debugger on a third-party application that has no symbol file, the debugger tries to extract symbolic information from the executable file and indicates that the characters are export symbols. These are not actual symbols, and they should not be used for debugging analysis.

In addition to the debuggers, Debugging Tools for Windows provides some other tools that can help you during debugging. The Logger and LogViewer, in particular, can help you debug application compatibility problems. Logger and LogViewer can help you analyze the API calls made by an application. If an application worked on an earlier version of Windows, differences in API implementations probably are causing the incompatibilities. One of the most effective ways to debug a third-party application is to examine the Win32 APIs that it calls.

CDB and NTSD

Microsoft Console Debugger (CDB) and the Microsoft NT Symbolic Debugger (NTSD) are console debuggers that allow you to analyze user-mode memory and constructs on target applications that are either console or graphical Windows applications. CDB and NTSD have the same functionality, except that NTSD opens a second command window when it is started. When you use these tools to debug an application that has failed, they can obtain a stack trace or display invalid parameters. You also can use them to observe the behavior of an application that is functioning properly.

By using CDB or NTSD, you can display and execute program code, set breakpoints, and examine and change values in memory. CDB and NTSD can disassemble binary code and display assembly instructions. They also enable you to analyze source code directly.

[image: image23.wmf]
Note

A copy of NTSD is installed in the \Windows\system32 directory when Windows XP Professional or Windows Server 2003 is installed, but the version included with Debugging Tools for Windows is the most recent version. The version of NTSD installed with Windows XP Professional or Windows Server 2003 can be used only for local debugging.

WinDbg

WinDbg is a graphical interface debugger that supports full source-level debugging for the Windows kernel, kernel-mode drivers, and system services, as well as user-mode applications and drivers. WinDbg is the most versatile debugger in Debugging Tools for Windows. It can monitor variables, CPU registers, and parameters passed in function calls. You also can use it to review a crash dump file from Dr. Watson, which captures the state of the system when a failure occurs. By using WinDbg, you can view source code, set breakpoints, and view variables (including C++ objects), stack traces, and memory.

Logger and LogViewer

Logger monitors the actions of a user-mode application and records all of its API calls. You can display the resulting information in a debugger, save it as a text file, or display it in an interactive format in the LogViewer.

You can start Logger by using the stand-alone Logger.exe program, or by starting NTSD or WinDbg, and using the LogExts.dll debugger extensions. Both methods produce the same type of log output. By starting Logger with NTSD or WinDbg, however, you have access to all the functionality of both a debugger and Logger.

After logging the API calls, you can use LogViewer to view the log file. You can view the list of all the API calls in the order in which they were logged, filter the list, export the list to a text file, and view the values of parameters sent to or received from each API call.

Obtaining Debugging Tools for Windows

Debugging Tools for Windows are available for downloading. To use the tools, you should also install the appropriate symbol files for the version of Windows that is running the application that you need to debug. Symbol files contain a variety of information that is not required to run a program, but that is useful for debugging. This information is contained in a symbol file instead of in the executable file for performance purposes. To download the most recent version of Debugging Tools for Windows and the appropriate symbol files, see the Debugging Tools link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources. For more information about debugging, including information about debugging tools, see Using Debugging Tools for Windows, which is installed when you install the Debugging Tools for Windows. To open Using Debugging Tools for Windows on Windows XP Professional, click Start, click All Programs, click Debugging Tools for Windows, and then click Debugging Help. To open Using Debugging Tools for Windows on Windows Server 2003, click Start, click Programs, click Debugging Tools for Windows, and then click Debugging Help.

Gathering Application Information

Before you begin testing, gather everything that you need for testing each application. Microsoft customers have found that the more effort they put into preparation and information gathering before beginning to test, the faster and more easily testing progresses. Having all related information readily available also makes it easier to resolve any problems that testing uncovers.

For each application, gather its software and documentation along with supporting components required to install and run the application, and find out whether the application is dependent on the network basic input/output system (NetBIOS).

Gathering Software and Supporting Information

Work with the application owners within your organization to locate each application and its documentation. Before installing each application in the test lab, gather the supporting information and components that are required to run it. For example, gather the following information:

· Required security clearances, such as user IDs, passwords, database permissions, group memberships, and so on.

· Required servers and IP addresses.

· Accurate installation instructions, installation media, and contact information for application experts.

· Service packs or patches that have been applied or are required.

· Software dependencies, such as the need for SQL Server or third-party components.

· Whether the application is client-based or server-based, and where each component resides — on the client or on the server.

· The version of Windows on which the application currently runs.

· Application configuration information, such as search paths and working directories.

· The directory path where the application files are installed.

· Registry settings that the application creates or modifies.

· The location where user data is stored.

· URLs for Web applications.

· The location of symbol files that were created when the application was compiled, for use with debuggers.

Identifying NetBIOS Dependencies

Determine whether any applications require NetBIOS. If any do, ensure that NetBIOS is included in the new Windows environment.

On computers running Windows 95, Windows 98, and Windows NT, NetBIOS is enabled by default. On computer running Windows 2000, Windows XP Professional, and Windows Server 2003, NetBIOS is disabled by default. If an application runs on a system without NetBIOS and calls functions that use NetBIOS, the functions return errors. In such a situation, you must either enable NetBIOS or change the application to use functions that do not depend on NetBIOS.

Developing Test Cases

Before starting to test, develop and document test cases, which describe the tests to be performed and, if possible, the expected results. The number and complexity of test cases that you need depends in part on how extensively you need to test an application. The extent of testing required for an application depends on several factors, including the application’s level of compatibility, how critical the application is to your business, and how often the application is used. In addition, the extent of testing required depends on whether the application is a third-party product, has been customized, or was developed in‑house. For third-party applications, the extent of testing also depends on whether the application is known to be compatible with the new version of Windows that you are deploying.

Applications that require limited testing fall into the following categories:

· Applications that are listed as Compatible in the Windows Catalog

· Applications that are not required to run the business

· Applications that are required to run the business, but can be offline for long periods of time without impacting the business

· Applications that do not impact the organization severely if they fail

Usually, you do not need to develop complex or wide-ranging test cases for these types of applications.

Applications that require in-depth testing fall into one or more of the following categories:

· Applications that have been developed in-house

· Applications that have been customized for your organization

· Applications whose compatibility is listed as Unknown by the Application Compatibility Analyzer

· Applications that are listed as Compatible with Issues by the Application Compatibility Analyzer

· Applications that are not listed in the Windows Catalog

For these applications, you need to develop a wide range of test cases that encompass all the functionality required in your environment.

Applications that are listed as Compatible by the Application Compatibility Analyzer or in the Windows Catalog or that are listed as Designed for Windows XP in the Windows Catalog do not need to be tested as extensively as those in the preceding list. Even so, you should perform general testing to ensure that these applications perform as expected, given the way they are used with your hardware and software configuration. Develop test cases for the functions that are used most frequently and for any atypical functions or unique techniques that are used. For example, if your organization uses scripts to manage the desktop environment, test the applications with those scripts. If your organization hosts applications with Terminal Server, remember to include test cases to test the applications with Terminal Server.

The testing methodology that you choose for each application determines how you develop the test cases. Many testing methodologies exist, and you might already have one that you use. If you do not already have a methodology for developing test cases, use one of the following methodologies:

· Windows Fundamentals Test Methodology, which helps you develop test cases when you have an in-depth understanding of the application

· Windows Applications Exploratory Test Methodology, which helps you develop test cases as you learn about an application that is unfamiliar to you

Using Windows Fundamentals Test Methodology

The Windows Fundamentals Test Methodology provides guidelines for developing test cases when you are familiar with an application, its end users, and its use in your environment. When you have this level of knowledge about an application, you can develop test cases based on the way your organization uses it.

When using the Windows Fundamentals test method, define the test cases ahead of time, before you start testing the application. Develop test cases for the following four areas: installation, operating system interaction, application functionality, and uninstallation. For a checklist to help you track your Windows Fundamentals tests, see the “Windows Fundamentals Testing Checklist” (PDP_APPA_2.doc) on the Windows Server 2003 Deployment Kit companion CD (or see the “Windows Fundamentals Testing Checkliston the Web at http://www.microsoft.com/reskit).

Developing Test Cases for Installation

Even if you plan to upgrade from an earlier version of Windows to Windows XP Professional or Windows Server 2003, you need to test application installation. This phase of testing verifies that an application can be installed correctly — whether by a user, a power user, or an administrator account — and that the various installation methods — typical, network, full, and minimal — work correctly. If you use Windows Installer, you should also test the application’s advertising and publishing functions.

Develop test cases to verify that the application:

· Installs successfully with the types of user account to be used in your environment (user, power user, or administrator).

· Installs successfully with the types of installation to be performed in your environment (minimal, typical, full, or custom).

· Installs successfully with the methods to be used in your environment (network installation or a local installation using Add or Remove Programs).

· Is listed correctly in Add or Remove Programs.

· Checks the Windows version correctly.

· Installs on a partition that has more than 2 GB of free disk space.

· Is listed on the Start menu, and has desktop shortcuts for all users (if applicable).

If you use Windows Installer, develop test cases to verify that the application:

· Advertises and publishes correctly.

· Uses system variables for the locations of user data settings.

· Respects Windows File Protection.

· Supports DLL redirection of shared components.

· Does not use outdated techniques such as placing .ini files in the system folder.

Developing Test Cases for Operating System Interaction

Tests of operating system interaction verify that an application works correctly with the fundamental features of the operating system. These tests use standard Windows operations, such as opening and closing files, manipulating windows, printing, and viewing Help and Support Center topics.
The following lists provide a starting point for identifying test cases that verify an application’s interaction with the operating system. This list is not exhaustive; it merely provides an idea of the scope of features to test. The “Windows Compatibility Checklist” white paper, which is included in the Windows Application Compatibility Toolkit, is oriented toward applications under development and might provide additional ideas. If an application uses peripherals such as scanners or digital cameras, you might also need test cases to verify the application’s interaction with these devices.

Basic application testing

Develop test cases to verify that the application:

· Interacts with the other applications used in your environment.

· Starts successfully in a variety of ways (from the Start menu, from shortcuts, from the autorun file on the application CD, from the console, and from the Quick Launch bar).

· Starts successfully when you double-click a file that has the file name extension associated with the application, if applicable.

· Starts successfully when another instance of the application is running (if applicable; some applications do not allow multiple instances).

· Has associated shortcuts on its Start menu, such as for documentation or related programs, that work correctly, if applicable.

· Handles copy, paste, and edit functions correctly.

· Handles changes to the monitor resolution correctly (such as a change from 640 × 480 pixels to 1024 × 768 pixels).

· Works correctly with Windows display themes.

· Starts successfully when you open an application document by using the wheel on a wheel mouse, if applicable.

· Scrolls correctly when you use the wheel on a wheel mouse, if applicable.

· Opens Help from the Help menu and with the F1 key, if applicable.

Testing file system interaction

Develop test cases to verify that the application can successfully:

· Handle long file names and universal naming convention (UNC) paths.

· Save a file to, and open a file from, an NTFS file system folder that has restricted access permissions.

· Save a file to, and open a file from, a disk partition that has more than 2 GB of free disk space.

· Save a file that has a 255-character file name to a UNC path and to a mapped drive, and open the file from both locations.

· Save a file that has a 255-character file name to the My Documents folder, and open it from that folder.

· Save and open a file that has supported special characters — such as a plus sign, a comma, a semicolon, an equal sign, or brackets ([]) — in the file name.

· Save and open all document types supported by the application.

· Import and export files of all formats that are supported by the application, such as JPG, GIF, or BMP.

· Open documents on the NTFS file system, even when they were created on the FAT16 or the FAT32 file system.

· Open and save a document on both a drive formatted for the FAT16 file system and a drive formatted for the NTFS file system.

· Open and save a document on both a drive formatted for the FAT32 file system and a drive formatted for the NTFS file system.

· Save and open a file on a distributed file system (DFS).

· Open documents that were copied from Windows NT Server 4.0–based or Windows 2000–based NTFS computers to Windows XP Professional–based NTFS computers.

Testing printing

Develop test cases to verify that the application can successfully:

· Print a document to a printer that has a long name.

· Print a document to a printer by using a UNC path.

· Print a document to a local printer and to a network printer.

· Print a document to a PostScript printer.

· Print to a file on a generic text printer.

· Print to a file on a color inkjet printer.

· Handle a print command when no printer drivers are installed.

· Print a document from an LPT port other than LPT1 or LPT2.

· Handle a print command when the printer is turned off while a document is printing.

· Print a document in both portrait and landscape orientations.

Testing Advanced Configuration and Power Interface (ACPI) support

Develop test cases to verify that the application:

· Handles ACPI notification and events correctly.

· Allows the monitor to turn off correctly when turn-off time is set to 1 minute.

· Allows the hard drive to turn off correctly when turn-off time is set to 2 minutes.

· Goes into standby and hibernation, and then resumes without loss of functionality.

· Wakes from standby and hibernation — whether triggered by normal time-out or by a low battery alarm — without losing data.

Testing support for multiple monitors

Develop test cases for configurations with multiple monitors, if appropriate, to verify that the application handles the following correctly:

· Monitor placement, left and right

· Monitor placement, top and bottom

· Different monitor resolutions on both monitors

· Different monitor color depths on both monitors

· Spanning across monitors, both from left to right and from top to bottom

· Mouse movement, back and forth from left to right and up and down from top to bottom, on both monitors

· Windows set to maximum size and minimum size on both monitors

Developing Test Cases for Application Functionality

Tests for application functionality validate that the application features used in your environment work as expected and that known input yields expected results. You need to test application functionality whether or not you have access to source code.

If you have developed or customized an application internally, you might have test scripts and data you can use to verify the application’s compatibility with the new operating system. If you do not have test scripts, work with the people in the organization who are familiar with the application to develop test cases that exercise all essential functions.
Developing Test Cases for Uninstallation

Tests for removing an application verify that all components are removed from the computer without causing problems.

Develop test cases to verify the following:

· The application is removed from Add or Remove Programs.

· All shortcuts are removed from the Start menu.

· All files in the installation directory are removed.

· No system files or shared components are removed.

· All application-specific registry entries are removed.

Using the Windows Applications Exploratory Test Methodology

The Windows Applications Exploratory Test Methodology defines a process for learning about an application so that you can identify the most important aspects to test when no one who is knowledgeable about the application is available for testing.

When you use the exploratory test methodology, you do not define the test cases in advance. Rather, you define the test cases and execute the tests as you explore and learn about the application.

Exploratory Testing Overview

The purpose of exploratory testing is to determine, in a limited amount of time, whether an application works well on the new version of Windows for the majority of users. Exploratory testing addresses both application functionality and stability. This method is not a comprehensive test method, and it is not a substitute for a more formal method if application experts are available.

Exploratory testing is an interactive process during which you concurrently explore the application, design the tests, and execute the tests. Although the method is freeform in many respects, the process includes specific tasks, objectives, and deliverables, making it a systematic process with auditable results.

This method is based on the General Functionality and Stability Test Procedure developed by James Bach. For more information about the exploratory test methodology, see the “Windows Applications Exploratory Test Procedure” white paper in the Application Compatibility Toolkit.

Exploratory Testing Process

The exploratory testing process consists of five tasks:

1. Identify the purpose of the application.

2. Identify the functions that the application supports.

3. Identify potential areas of application instability.

4. Document issues and questions that arise about the application during the exploration process.

5. Create a test outline, and use it to execute the tests.

As you identify the purpose, functions, and areas of potential instability, you create a test case outline and use it to test each function and to record problems. The results of the exploratory testing process are notes and documented application failures.

Because it is not possible to test all functions of an application in a limited amount of time, you can simplify the testing process by making risk-based decisions about how much attention to give each function. To help you make these decisions, the methodology categorizes functions as primary or contributing.

To determine which functions are primary and which are contributing, you must understand the purpose of the application. A primary function is associated with the purpose of the application and is essential to that purpose. Any function that contributes to the utility of the application, but is not essential to it, is a contributing function. Typically, primary functions warrant the most testing. Sometimes a group of contributing functions might be considered a single primary function, or a single primary function might be separated into primary and contributing subfunctions. For more information about how to classify a function, see the “Windows Applications Exploratory Test Procedure” white paper in the Application Compatibility Toolkit.

After identifying and categorizing the functions, test all of the primary functions that you can reasonably test in the time available. Then test a sample of significant contributing functions. Many contributing functions probably will be tested as you test the primary functions.

Also test areas where application instability is most likely to occur, especially in primary functions. Functions that are potentially unstable include:

· Functions that interoperate with other applications.

· Functions that handle events that are external to the application, for example, waking up a sleeping computer when a fax arrives.

· Functions that make intensive use of memory.

· Functions that interact extensively with the operating system.

· Functions of unusual complexity.

· Functions that change operating parameters, such as preference settings.

· Functions that modify the operating system configuration.

· Functions that intercept or recover from errors.

· Functions that replace basic operating system functions.

· Any function or set of functions that involves multiple simultaneous processes.

· Functions that manipulate multiple files simultaneously.

· Functions that open files over a network.

Testing for and Resolving Compatibility Problems

After developing your test cases, you can start to test applications and record the results. Perform your basic testing first, using either the Windows Applications Exploratory Test Methodology or the Windows Fundamentals Test Methodology. Then, if you have access to source code, use Application Verifier to test for subtle problems that are difficult to find. As you detect compatibility problems, use Compatibility Administrator to apply and test application compatibility fixes to resolve the problems. For some special cases in which application compatibility fixes do not resolve the problem, you might need to try special techniques. Figure 3.7 shows when these testing and problem resolution tasks occur during the application compatibility testing process.

Figure 3.7 Testing for and Resolving Compatibility Problems

[image: image24.wmf]
Testing Applications

As you conduct tests, evaluate and record the results. Before you assume the problem is a Windows compatibility issue, always perform the following two steps:

· Verify that the problem is not a test environment issue. The problem might be the result of a hardware, software, or network configuration issue rather than an application compatibility problem.

· Verify that the problem does not occur on the version of Windows you currently use. Perform exactly the same test on the version of Windows on which the application currently runs to see if it works correctly there. If the same error occurs on the current platform, the problem is not a compatibility issue specific to Windows XP Professional or Windows Server 2003.

The testing process is an iterative process of testing, identifying problems, resolving problems, and retesting. The steps in the process vary depending on the nature of the problem encountered and the nature of the resolution. Problems that are resolved by applying an application compatibility fix, for example, are managed differently from problems resolved by modifying source code or obtaining vendor upgrades.

For problems that can be resolved by applying an application compatibility fix, the resolution phase can be built into the testing phase: As you encounter problems, you apply application compatibility fixes and retest until the application is ready to deploy.

If you modify source code, the iterative process is the more traditional cycle of testing, debugging, coding and recompiling, and retesting. If you cannot identify an application compatibility fix to resolve the problem, and you do not have access to source code, you need to contact the application vendor for an application upgrade.

Figure 3.8 illustrates the testing process.

Figure 3.8 Testing Applications

[image: image25.wmf]
Testing with Windows Application Verifier

When you have access to source code, Windows Application Verifier can help you uncover subtle stability, reliability, compatibility, and security problems. Windows Application Verifier is not an automated test tool. To use it, you must run an application with Application Verifier enabled and exercise all of your test cases.

Windows Application Verifier helps you to identify code that needs to be modified by running in either of two modes of operation: debugging or logging. In debugging mode, it detects problems in the application and transfers the results to a debugger. In logging mode, it writes all of the output that it generates to a text file for later review.

Figure 3.9 shows the main window of Application Verifier.

Figure 3.9 Application Verifier Main Window

[image: image26.wmf]
To start Application Verifier on Windows XP Professional, click Start, click All Programs, click Microsoft Windows Application Compatibility Toolkit, and then click Windows Application Verifier. On Windows Server 2003, click Start, click Programs, click Microsoft Windows Application Compatibility Toolkit, and then click Windows Application Verifier.
To use Application Verifier, you must be logged on as an Administrator. Click Add to add the applications that you want to test in the left pane. To test an application, select it in the left pane, select the tests that you want to apply to it in the right pane, and then start the application in your normal way and run the test cases. After you add an application to the list, Application Verifier is enabled for that application, whether you start the application from this tool, from a shortcut, or from the command line. The tests that you select are applied whenever you run the application on that computer until you remove the application from the list in Application Verifier.

[image: image27.wmf]
Note

Application Verifier tests require the symbol files for the version of Windows and the application that you are testing.

The tests detect the most common application problems, such as incorrect version checking, bad registry usage, and hard-coded file paths. You can view a list of the detected problems in the Application Verifier log, which is located in the \Documents and Settings\All Users\Shared Documents\AppVerifierLogs folder with a file name corresponding to the name of the executable file for the application. You also can export the log to a text file so that you can send it to others.

Some of the test options provided by this tool are designed to cause the application to stop responding when it encounters a problem. These problems are not written to the Application Verifier log. To determine the cause of the problem in such a case, run the application under a debugger with Application Verifier running. When using a debugger, you can set Application Verifier so that it breaks into the debugger for any event that is written to the Application Verifier log.

For more information about the Application Verifier tool, see Windows Application Compatibility Toolkit Help.
Table 3.6 describes the tests that you can perform with Application Verifier.

Table 3.6 Application Verifier Tests

	Test
	Description

	PageHeap — Detect heap corruptions
	Performs regular checks of the heap and adds guard pages at the end of each allocation to catch possible heap overruns.

	Locks — Check lock usage
	Looks for common errors with locks, and displays the output in a separate debugger application. This test can cause access violations if an error is found.

	Handles — Detect invalid handle usage
	Checks for common problems with handles, and displays the output in a separate debugger application. This test can cause access violations if an error is found.

	Stacks — Check for adequate stack
	Disables stack growth, causing a stack overflow exception if the initial allocation is too small.

	LogStartAndStop — Logs start and stop
	Enters log information when the application starts or stops, making it easier for you to review test data.

	FilePaths — Checks system path usage
	Monitors the application’s attempts to obtain file path information to determine if the application uses hard-coded paths or a nonstandard method of gathering the path information. This test can cause the application to stop responding if the application uses an improper method for determining file paths.

	HighVersionLie — Checks version handling
	In the past, many applications were written to run on a specific version of Windows. This test returns a very high version number to test how the application handles a version that does not yet exist.

(continued)

Table 3.6 Application Verifier Tests (continued)

	Test
	Description

	RegistryChecks — Checks registry usage
	Checks how the application uses the system registry to determine whether the application uses any inappropriate or dangerous calls. Logs any problems that it detects.

	WindowsFileProtection — Logs changes to Windows File Protection files
	Verifies that applications are not improperly replacing files that are protected by Windows File Protection.

	DXFileVersionInfo — Logs DirectX file checks
	Logs information about any attempt that the application makes to check the version of Microsoft® DirectX® application programming interface installed on the local computer.

	LogRegistryChanges — Logs registry changes
	Logs any changes that the application makes to the registry.

	LogFileChanges — Logs file system changes
	Logs information about any change that the application makes to the file system.

	ObsoleteAPICalls — Logs calls made to obsolete APIs
	Logs any attempt to use a deprecated API, which is an API that is still supported but is likely to be unsupported in the future.

	KernelModeDriveInstall — Logs installation of kernel-mode drivers
	Logs data about any kernel-mode driver that is installed for use by the application.

	SecurityChecks — Logs potential security problems
	Identifies many common security problems.

Applying and Testing Solutions with
Compatibility Administrator

Compatibility Administrator is an all-purpose tool that you can use to apply and test application compatibility fixes and compatibility modes, and then package them for deployment. Application compatibility fixes are prepackaged solutions provided by Microsoft to resolve known compatibility problems. Compatibility modes are collections of application compatibility fixes that resolve problems that commonly occur under certain circumstances. By using Compatibility Administrator, you can fine-tune the solutions to be applied to an application by mixing and matching application compatibility fixes and compatibility modes.

To simplify distribution, you can create custom databases that consolidate all of the solutions that are required in order to support multiple applications. For example, you can create one custom database for each standardized desktop in a managed environment and then deploy those databases to the computers running Windows XP Professional and Windows Server 2003 in your environment.

In addition, use Compatibility Administrator to:

· Create custom compatibility modes.

· Create custom Application Help messages.

· Search the computer’s hard disk for applications whose compatibility problems are resolved with application compatibility fixes, compatibility modes, or Application Help messages.

· Query compatibility databases for solutions that meet specified criteria.

· Temporarily disable or enable application compatibility fixes.

Use this tool whether or not you have access to the source code for your applications. You do not need to log on under an Administrator account to run Compatibility Administrator, but you do need to log on under an Administrator account to install a custom database.

Strategies for Using Compatibility Administrator

When you have determined that an application has compatibility problems, you can use the Compatibility Administrator to apply one or more application compatibility fixes to resolve the problems. The steps that follow are a suggested approach to isolating the appropriate resolution.

To resolve compatibility problems for an application by using the Compatibility Administrator:

1. Follow the suggestions contained in Application Help messages that appear for the application. For example, an Application Help message might indicate where you can obtain a patch.

2. To quickly determine whether application compatibility fixes resolve the problems, try a prepackaged compatibility mode. Start with the compatibility mode that targets the environment in which the application currently runs. For example, if the application currently runs on Windows 98, use the Windows 98/Windows Me compatibility mode, or, if you are testing as a restricted user, try Limited User Access (LUA) mode. You might need to try several compatibility modes until you find one that works. Include the color, resolution, and visual themes compatibility modes, if necessary.

3. If a compatibility mode does not resolve all of the problems, try a combination of a compatibility mode and application compatibility fixes. When you apply a compatibility mode, you can add or remove any combination of application compatibility fixes. For information about which application compatibility fixes to apply for different types of problems, see “Determining the Application Compatibility Fix to Apply” later in this section.

If you resolve compatibility problems by applying a compatibility mode, you should then determine the precise mix of application compatibility fixes required for the application by iteratively deleting application compatibility fixes and retesting. Doing so can prevent introducing new problems with application compatibility fixes that are not necessary. However, you might need to balance the very low risk of introducing new problems against the time you have available for testing applications.

Follow these guidelines as you apply and test application compatibility fixes and modes:

· Do not use compatibility modes to bypass version warnings for the installation programs of kernel-mode applications such as antivirus, firewall, CD burning, disk management, or backup applications. Some of these applications are designed for a specific operating system and, therefore, they intentionally prohibit the use of later versions. Installing such applications can potentially cause system instability. Replace such applications with ones designed specifically for Windows XP Professional or Windows Server 2003.

· Before you start testing your applications, be sure that you have installed the most current critical updates and operating system updates. Critical updates and operating system updates can contain application compatibility fixes. You can use Windows Update or Software Update Services (SUS) to obtain critical updates and operating system updates. To access the Windows Update Web site, click the Home button in Help and Support Center for Windows Server 2003, and then, under Pick a Task, click Keep your computer up-to-date with Windows Update. For more information about SUS, see “Deploying and Distributing Applications and .Sdb Files” later in this chapter.

· If you find a combination of application compatibility fixes that you think will work for multiple applications, create a custom compatibility mode. If you need to include a custom compatibility mode in a different custom database, copy it. For information about how to create a custom compatibility mode and copy it to a different database, see “Creating Custom Compatibility Modes” later in this chapter.

· For simplicity in deployment, create as few custom databases as possible. Even if you create several custom databases during the testing process, you can consolidate them into a single database by using Compatibility Administrator. For information about how to copy to a database, see “Creating Custom Compatibility Modes” later in this chapter.

Applying and Testing Application Compatibility Fixes

When you encounter an application that has a compatibility problem, use Compatibility Administrator, shown in Figure 3.10, to select application compatibility fixes, either singly or in combination, and then test the application to see if the fixes resolve the problem. To find application compatibility fixes for a wide range of problems, use the “Compatibility Solutions Spreadsheet” (PDP_APP_1.xls) on the Windows Server 2003 Deployment Kit companion CD (or see the “Compatibility Solutions Spreadsheet” on the Web at http://www.microsoft.com/reskit) or, see Table 3.9 through Table 3.31.

Figure 3.10 Compatibility Administrator

[image: image28.wmf]
To start Compatibility Administrator on Windows XP Professional, click Start, click All Programs, click Microsoft Windows Application Compatibility Toolkit, and then click Compatibility Administrator Tool. On Windows Server 2003, click Start, click Programs, click Microsoft Windows Application Compatibility Toolkit, and then click Compatibility Administrator Tool.

The left pane displays the contents of all the application compatibility databases on the computer. When you select an application that is listed in a database, the right pane displays detailed information. For example, if you select an application in a custom database in the left pane, the right pane displays the application file name, the compatibility mode or application compatibility fixes that apply to the application, and the application matching information.

[image: image29.wmf]
To select and test application compatibility fixes

1. On the File menu, click New to create a new custom database.

2. On the Database menu, click Create New, and then click Application Fix.

3. Follow the steps in the Create New Application Fix Wizard to select the application to test and the compatibility mode or application compatibility fixes to apply, and then click Test Run to test the application from the wizard.

4. Continue selecting application compatibility fixes and retesting them until the problem is resolved.

5. Continue following the steps in the wizard to select the type of information that you want to use to match the application to the application compatibility fix.

6. Click Finish to save the application compatibility fixes in the database.

7. On the File menu, click Save to save the custom database. Provide a descriptive name for the database; the system appends an .sdb file name extension. Then save the database in the systemroot\AppPatch\Custom folder (or any other folder that you choose).

Alternatively, you can use this procedure to add more applications, with their associated application compatibility fixes, to an existing custom database. You also can copy application compatibility fixes from other application compatibility databases by using the Copy command on the shortcut menu, which is displayed by right-clicking the application name in the left pane of Compatibility Administrator.

This procedure saves the custom database but does not install it on the test computer. This means that the next time you run the application on the test computer without Compatibility Administrator running, the application compatibility fixes will not be applied to the application. To apply the application compatibility fixes to an application every time that you run it, you must install the custom database on the computer on which the application will run.

[image: image30.wmf]
To install a custom database on the test computer

1. In Compatibility Administrator, select the custom database that you want to install.

2. On the File menu, click Install.

[image: image31.wmf]
Note

You can run Compatibility Administrator in expert mode by typing compatadmin.exe /x at the command line. Expert mode provides more than 200 additional fixes, many of which are application-specific, that you can apply to a custom database. For more information about expert mode, see the Application Compatibility Toolkit version 3.0 or later.

For information about deploying and installing custom databases on Windows XP Professional or Windows Server 2003 computers, see “Deploying and Distributing Applications and .Sdb Files” later in this chapter.

Applying and Testing Compatibility Modes

Sometimes you might want to get an application to work quickly by applying all of the application compatibility fixes that are commonly required by applications written for a specific computing environment, instead of testing for the specific application compatibility fixes needed by the application. In this case, you can apply a prepackaged compatibility mode. A prepackaged compatibility mode is a group of application compatibility fixes that resolve problems that commonly occur in certain environments. For example, one prepackaged compatibility mode includes application compatibility fixes that address problems typically found in applications that are run by users with limited user rights.

Table 3.7 lists the prepackaged compatibility modes that Compatibility Administrator provides and describes what they do.

Table 3.7 Prepackaged Compatibility Modes

	Prepackaged Compatibility Mode
	Description

	Windows 95
	Resolves the most common Windows 95 incompatibilities.

	Windows 98 / Windows Me
	Resolves the most common Windows 98 and Windows Millennium Edition incompatibilities.

	Windows NT 4.0 SP 5
	Returns version credentials for Windows NT Server 4.0 with Service Pack 5.

	Windows 2000
	Returns version credentials for Windows 2000.

	256 Color
	Sets the screen to 256 colors; this is most useful for games and educational titles.

	640 x 480 Screen Resolution
	Sets the screen resolution to 640 x 480 pixels; this is most useful for games and educational titles.

	Disable Visual Themes
	Disables Windows XP Professional or Windows Server 2003 visual themes.

	International
	Handles double-byte character sets.

	Limited User Access
	Redirects file-system and registry write requests to nonrestricted areas when the user has insufficient access permissions; useful for applications written for versions of Windows that have no security‑related user accounts.

	Profile Setup Support
	Installs the application for all users of a computer rather than only for the current user.

You can apply a prepackaged compatibility mode in two ways:

· Use Compatibility Administrator to add a prepackaged compatibility mode to a custom application compatibility database.

· Use a batch file or script to apply a prepackaged compatibility mode directly to an application.

Applying Prepackaged Compatibility Modes by Using Compatibility Administrator

You can use Compatibility Administrator to add any of the prepackaged compatibility modes to an application compatibility database. The procedure for doing this is identical to the procedure described in “Applying and Testing Application Compatibility Fixes” earlier in this chapter. However, instead of adding application compatibility fixes to an application compatibility database, you add one of the prepackaged compatibility modes listed in Table 3.7.

Applying Compatibility Modes in Batch Files and Scripts

If you have a batch file or script that executes programs that have compatibility problems, you can apply prepackaged compatibility modes from the script or batch file instead of packaging them in a custom database and deploying the database to the computer where the programs run. When you apply compatibility modes in a batch file or script, you can ensure that they are recursively applied to processes initiated by any command in the batch file.

The syntax for applying compatibility modes in a script or batch file is:

set __COMPAT_LAYER=[!]CompatModeName1 [CompatModeName2]

The keyword set is followed by a space and then two underscores (__). CompatModeName represents the short name for the compatibility mode to be applied, as defined in Table 3.8. For example, the Windows 98 compatibility mode is “Win98.” The parameter “!” specifies that a compatibility mode is not to be applied if other application compatibility fixes are already being applied to the application.

Table 3.8 Scripting Short Names for Compatibility Modes

	Prepackaged Compatibility Mode
	Scripting Short Name

	Windows 95
	Win95

	Windows 98/Windows Me
	Win98

	Windows NT 4.0 SP 5
	NT4SP5

	Windows 2000
	Win2000

	256 Color
	256Color

	640 x 480 Screen Resolution
	640x480

	Disable Visual Themes
	DisableThemes

	International
	International

	Limited User Access
	LUA

	Profile Setup Support
	ProfilesSetup

For example, to apply the Windows 98 and Disable Visual Themes compatibility modes, use this command:

set __COMPAT_LAYER=Win98 DisableThemes

You can disable the compatibility mode after applying it in this way by using the same command without specifying the compatibility mode. For example, you can cancel the compatibility mode if it is no longer needed at a certain point in the batch file. Any processes that start while the compatibility mode is in effect continue to run with the compatibility mode activated until they terminate. The syntax for canceling a compatibility mode in a script or batch file is:

set __COMPAT_LAYER=

To see a simple example of the set command in a batch file, see article Q286705, “HOW TO: Script Compatibility Layers in Windows XP,” in the Microsoft Knowledge Base. To find this article, see the Microsoft Knowledge Base link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.
Creating Custom Compatibility Modes

As you identify the application compatibility fixes that are needed for your applications, you might find a group of them that are needed for several applications, or you might want to customize a prepackaged compatibility mode by adding or removing application compatibility fixes. In this case, you can create a custom compatibility mode and include it in multiple custom databases.

[image: image32.wmf]
To create a custom compatibility mode

1. In the Compatibility Administrator, select the custom database to which you want to add the custom compatibility mode.

2. On the Database menu, click Create New, and then click Compatibility Mode.

3. Give the custom compatibility mode a descriptive name, and select the application compatibility fixes to include in it.

4. On the File menu, click Save to save the updates to the custom database.

Include the new custom compatibility mode in other custom databases by using the Copy and Paste commands on the shortcut menu, which is displayed by right-clicking the compatibility mode name.

Creating Custom Application Help Messages

When a compatibility problem cannot be resolved with an application compatibility fix, an Application Help message is the last option. Application Help messages can prevent users from running an application that might cause system instability or that might affect other applications adversely. An Application Help message either blocks the application from running or displays an informative message before allowing the application to run. For example, an Application Help message might notify the user that the application requires a patch and provide the URL to the vendor’s Web site.

Microsoft, in conjunction with ISVs, has developed prepackaged Application Help messages for some third-party applications that have compatibility problems. The prepackaged Application Help messages are most commonly used to block the installation of low-level programs — such as antivirus programs and disk access utilities — that were not designed to run on Windows XP Professional or Windows Server 2003. The messages are displayed when a user attempts to install or run one of these applications.

You also can create custom Application Help messages. Because Application Help messages do not resolve compatibility issues, but instead only notify or stop the user, use this type of solution only when you can find no other solution. Whether or not you choose to use an Application Help message that blocks the application from running, provide an informative message that describes possible results or provides instructions about where to find a patch.

[image: image33.wmf]
To create a custom Application Help message

1. In the Compatibility Administrator, select the custom database to which you want to add the custom Application Help message.

2. On the Database menu, click Create New, and then click Apphelp Message.

3. Follow the steps in the Create a Custom AppHelp Message Wizard to select the application to test and the type of information to use to match the application to the Application Help message.

4. Follow the steps in the wizard to specify whether you want the application to run or not to run after the message is displayed, and to specify the message text.

5. Click Test Run to test the application with the new Application Help message.

6. After resolving any problems, on the File menu, click Save to save the updates to the custom database.

Determining the Application Compatibility Fix to Apply

The tables in this section include descriptions of some compatibility problems that might occur in applications written for earlier versions of Windows, along with the application compatibility fixes that resolve them. As you test applications and encounter compatibility problems, these tables can help you isolate the most appropriate application compatibility fix to apply. If you are still in the planning phase, skip to “Identifying Strategies for Resolving Special Problems” later in this chapter for additional information on resolving problems.

In some cases, you might need to look at multiple tables to find the application compatibility fix that resolves your compatibility problem. For example, you might want to review both color palette issues (Table 3.12) and display issues (Table 3.13) if elements in the application window are not displayed correctly.

Table 3.9 identifies the application compatibility fixes that you can apply for 16‑bit applications that have compatibility problems.

Table 3.9 Application Compatibility Fixes for 16-Bit Application Problems

	Symptom
	Application Compatibility Fix

	The installation program or application expects to find Microsoft Windows 95 or Microsoft Windows 98 running.
	WOWCFEX_PLATFORMVERSIONLIE

	The installation program or application expects to find Microsoft Windows NT running.
	WOWCF2_HACKWINFLAGS

	The installation program or application expects to find Service Pack 2 installed.
	WOWCFEX_SP2CSDVERSIONLIE

	The application window is hidden by a second window.
	ForceSeparateVDM

	The application becomes unresponsive.
	WOWCF_NOWAITFORINPUTIDLE

	The application behaves unpredictably.
	WOWCF_USER_DDENOSYNC

	A minimized application cannot be restored.
	WOWCF2_FIXLUNATRAYRECT

	Messages are displayed behind the application.
	WOWCF2_SETFOREGROUND

	A message indicates that a file has not been found.
	WOWCF2_SYNCSYSFILE

	A message indicates that the application requires 256 colors.
	WOWCFEX_DISPMODE256

	A message indicates that the application requires 256 colors.
	WOWCFEX_EATDEVMODEMSG

	A general protection fault (GP fault) occurs.
	WOWCFEX_FORCEINCDPMI

	The application returns a divide-by-zero error.
	WOWCF2_DELAYTIMEGETTIME

	The Help file does not open.
	WOWCFEX_USEWINHELP32

Table 3.10 identifies the application compatibility fixes that you can apply when the application cannot be removed successfully.

Table 3.10 Application Compatibility Fixes for Application Removal Problems

	Symptom
	Application Compatibility Fix

	The application returns the “<DirName> refers to a location that is unavailable” error message when an application is removed.
	DelayShowGroup

	During uninstallation, the application returns an error message stating that registry entries cannot be removed.
	LUARedirectReg_Cleanup

	Files are left behind after an application has been uninstalled.
	LUARedirectFS_Cleanup

	Files are left behind after an application has been uninstalled.
	MoveWinInitRenameToReg

Table 3.11 identifies the application compatibility fixes that you can apply when problems occur with the Clipboard when you perform copy and paste operations.

Table 3.11 Application Compatibility Fixes for Clipboard Problems

	Symptom
	Application Compatibility Fix

	The application does not perform copy or paste operations correctly.
	EmptyClipboardtoSet

	When bitmaps are copied to or from the Clipboard, the application returns the “Access violation” error message.
	EmulateClipboardDIBFormat

Table 3.12 identifies the application compatibility fixes that you can apply when the color palette is distorted or when components of the application window are displayed in the wrong color.

Table 3.12 Application Compatibility Fixes for Color Palette Problems

	Symptom
	Application Compatibility Fix

	The application window does not display as expected at startup and during execution.
	IgnoreHungAppPaint

	The application changes the system colors.
	IgnoreSysColChanges

	After the application switches tasks or modes, colors change.
	PaletteRestore

	A palette error occurs.
	EmulateGetDeviceCaps

	A palette error occurs when you quit the application, and it returns the “PM_free():Allocation 001B4498 failed integrity check! (InitPalette)” error message.
	EmulateGetDeviceCaps

	The application returns the “Unhandled Error: User Category 10 Fatal Error: Code 2 Palette Error” message.
	EmulateDeleteObject

	The palette is distorted.
	ForceDefaultSystemPaletteEntries

(continued)

Table 3.12 Application Compatibility Fixes for Color Palette Problems (continued)

	Symptom
	Application Compatibility Fix

	After the application switches tasks or modes, images appear corrupted.
	PaletteRestore

	After the application switches tasks or modes, the background turns black.
	PaletteRestore

	After the application switches tasks or modes, buttons disappear.
	PaletteRestore

Table 3.13 identifies the application compatibility fixes that you can apply when the application has problems with the screen display, such as incorrect screen resolution and color quality settings.

Table 3.13 Application Compatibility Fixes for Display Problems

	Symptom
	Application Compatibility Fix

	The application starts up in a 640 x 480 pixel window and does not switch to a full screen.
	Force640x480

	The application starts up in a 640 x 480 pixel window and does not switch to a full screen.
	Force640x480x16

	The application starts up in a 640 x 480 pixel window and does not switch to a full screen.
	Force640x480x8

	Most of the application window runs off the desktop.
	LazyReleaseDC

	The application returns a message that indicates that the display is corrupted.
	Force8BitColor

	Graphics are corrupted in full-screen mode.
	ForceDirectDrawEmulation

	The application returns a message that indicates that 256 colors are required.
	Force8BitColor

	The application returns a message that indicates that 256-color mode is required.
	ForceDisplayMode

	Introductory videos do not play.
	ForceDirectDrawEmulation

	The taskbar is visible when the application is in full-screen mode.
	HideTaskBar

	When the application switches modes, the screen becomes blank. Pressing ALT+TAB restores the video display.
	IgnoreNoModeChange

	When the application closes, the system display mode changes.
	ForceTemporaryModeChange

	When the application closes, the display mode is not restored.
	EmulateUSER

Table 3.14 identifies the application compatibility fixes that you can apply when the application fails during execution.

Table 3.14 Application Compatibility Fixes for Execution Problems

	Symptom
	Application Compatibility Fix

	Access violations occur regularly during application execution.
	DisableBoostThread

	The application shuts down unexpectedly during execution.
	HeapIgnoreMoveable

	The application shuts down unexpectedly during execution.
	HeapLookasideFree

	The application shuts down unexpectedly during execution.
	HeapPadAllocation

	The application shuts down unexpectedly during execution.
	HeapValidateFrees

	The application shuts down unexpectedly when it accesses configuration or user settings.
	LUARedirectFS

	The application periodically shuts down unexpectedly, typically at the same interval at which the screen saver is set to activate.
	DisableScreenSaver

	Access violations occur during normal functioning as the heap becomes corrupted, causing the application to become unresponsive.
	EmulateHeap

	An access violation occurs when the application switches contexts.
	HeapForceGrowable

	The application returns a “Runtime error 6” message when you install add-ons to the application.
	IgnoreVBOverflow

	The application returns a “Runtime error 6” message when you attempt to use Help.
	IgnoreVBOverflow

	Executable programs designed to run at Windows startup, such as application toolbars, do not run for all users.
	LUARedirectReg

	A default screensaver cannot be applied.
	MoveIniToRegistry

Table 3.15 identifies the application compatibility fixes that you can apply when access violations occur while an application is exiting.

Table 3.15 Application Compatibility Fixes for Exit Problems

	Symptom
	Application Compatibility Fix

	Access violations occur when the application is closed.
	EmulateHeap

	Access violations occur when the application is closed.
	IgnoreFreeLibrary

	Access violations occur when the application is closed.
	IgnoreLoadLibrary

	Access violations occur when the application is closed.
	IgnoreCRTExit

	Access violations occur when the application is removed.
	IgnoreCRTExit

	Access violations occur when dialog boxes are canceled.
	IgnoreCRTExit

Table 3.16 identifies the application compatibility fixes that you can apply when the application has file access problems.

Table 3.16 Application Compatibility Fixes for File Input/Output Problems

	Symptom
	Application Compatibility Fix

	During installation or operation, the application reports the incorrect amount of available disk space.
	EmulateGetDiskFreeSpace

	When a user with a DBCS (double-byte character set) name starts the application, the application returns an error message indicating that there are problems with the user’s temp path.
	RedirectDBCSTempPath

	The application returns the “The system file does not exist” error message.
	RedirectWindowsDirToSystem32

	When you attempt to open certain Audio Video Interleaved (.avi) files, the application returns the “Access violation” error message.
	EmulateWriteFile

	When you attempt to open a file, the application stops responding.
	RemoveOverlappedFlagFromCreateFile

	When you attempt to open a file, the application says that the file is read-only.
	RemoveReadOnlyAttribute

	When you attempt to open a folder, the application says that the folder is read-only.
	RemoveReadOnlyAttribute

	When you move files or projects, the application returns the “Access violation” error message.
	ChangeAuthenticationLevel

	The application returns the “File mapping not created” error message.
	CorrectCreateEventName

	The application returns the “File mapping not created” error message.
	EmulateCreateFileMapping

	When accessing a CD, the application returns either the “Unable to locate files” or the “Unable to install” error message.
	EmulateCDFS

	When accessing a CD, the application quits without generating an error message.
	RemoveNoBufferingFlagFromCreateFile

	The application returns the “Files do not exist” error message.
	EmulateEnvironmentBlock

	Files are not found or error messages or paths are truncated.
	EmulateGetCommandLine

	The Uninstall command fails to remove files and folders from program files. You need to use this fix with the CorrectFilePaths compatibility fix (in Table 3.26).
	CorrectFilePathsUninstall

Table 3.17 identifies the application compatibility fixes that you can apply when focus within an application is not maintained correctly.

Table 3.17 Application Compatibility Fixes for Focus Problems

	Symptom
	Application Compatibility Fix

	When the application starts, the configuration window is minimized.
	ForceKeepFocus

	The application window becomes inactive.
	ForceApplicationFocus

	A message box becomes inactive.
	ForceMessageBoxFocus

Table 3.18 identifies the application compatibility fixes that you can apply when graphical elements in the application are not displayed correctly.

Table 3.18 Application Compatibility Fixes for Graphics Control Problems

	Symptom
	Application Compatibility Fix

	When the application loads, the graphics become corrupted.
	EmulateBitmapStride

	When a minimal installation of the application is performed, graphics are missing and video clips do not play.
	ForceCDStop

	When the application starts, the screen becomes blank.
	ForceSimpleWindow

	When the application starts, the screen becomes blank.
	EmulateDirectDrawSync

	When the application starts, the screen becomes blank.
	WinExecRaceConditionFix

	Either the introductory video does not appear, or the application won’t play in hardware mode.
	ForceSimpleWindow

	Inactive windows do not display as expected.
	AlwaysActiveMenus

	Clicking on an active bitmap image causes the application to become unresponsive. Bitmap images do not load.
	CorrectBitmapHeader

	Instead of an icon, a shadowed block appears.
	CorrectCreateIcon

	When the application loads bitmaps, they do not display as expected.
	CorrectCreateSurface

	The characters of the Far East fonts do not display correctly.
	CorrectFarEastFont

	Pressing ESC returns you to a blank window rather than to the application menu.
	DelayWin95VersionLie

	Menu or list box contents do not appear or they do not appear as expected.
	DisableAnimation

	When you enable the FilterKeys option, the graphics do not display as expected.
	DisableFilterKeys

(continued)

Table 3.18 Application Compatibility Fixes for Graphics Control Problems (continued)

	Symptom
	Application Compatibility Fix

	The application alternates between the currently applied themed view and the nonthemed view.
	DisableThemes

	When the application runs under new themes, the standard message boxes do not appear.
	DisableThemes

	The system buttons (Minimize and Close) do not work.
	DisableThemes

	The title bar of the application window hides the toolbars.
	DisableThemes

	Dialog boxes are truncated.
	DisableThemes

	Buttons overlap.
	DisableThemes

	When the application window is resized, it does not display as expected.
	DisableThemes

	Text does not appear in the menu or in message boxes.
	EmulateDrawText

	The application fails when it attempts to display the menu or message boxes.
	EmulateDrawText

	Bitmaps in the Autorun dialog boxes do not display as expected.
	EmulateGetProfileString

	The application scrolls text too rapidly.
	EmulateGetStringType

	Typed text or text that should be displayed on the menu buttons or on labels does not appear.
	EmulateTextColor

	The application does not display graphics.
	EnlargeGetObjectBufferSize

	A file cannot be inserted as an icon into another file. Attempting to do so produces an “Out of memory or system resources” error.
	ExtractAssociatedIcon

	An application’s attempts to access menus, specifically the File menu, produces an “Access violation” error.
	FailObsoleteShellAPIs

	The menu and toolbar buttons are the wrong color.
	FakeThemeMetrics

	Typed text or text that is displayed on the menu buttons or in labels is the wrong color.
	EmulateTextColor

	Menu commands are replaced with black boxes.
	ForceDefaultSystemPaletteEntries

	The application fails when it returns to the main menu.
	HeapDelayLocalFree

	The mouse pointer appears unexpectedly.
	HideCursor

	A button or other control is corrupted.
	LoadComctl32Version5

	Resizing a window causes the icons and other visual elements to disappear.
	NoGdiBatching

(continued)

Table 3.18 Application Compatibility Fixes for Graphics Control Problems (continued)

	Symptom
	Application Compatibility Fix

	The application window flickers and is repeatedly refreshed.
	NoShadow

	The user interface is unresponsive.
	RemoveInvalidW2KWindowStyles

	After you quit the application, the system cursor is not restored.
	RestoreSystemCursors

	Images, and the text associated with them, are displayed backwards.
	UnMirrorImageList

	When you insert an image file, the application returns an “Access violation” error message.
	IgnoreLoadLibrary

	When you modify an image, an access violation occurs.
	DisableThemes

Table 3.19 identifies the application compatibility fixes that you can apply when the application fails to install.

Table 3.19 Application Compatibility Fixes for Installation Problems

	Symptom
	Application Compatibility Fix

	When you attempt to install the application, the application returns the “ComponentMoveData” error message.
	CorrectOpenFileExclusive

	When you attempt to perform a default installation, text in the Destination Directory dialog box is unreadable.
	EmulateGetProfileString

	When you attempt to install the application, the application returns “The application or DLL <drive>:\<%windir%>\system32\ole2.dll is not a valid Windows image” error message.
	CorrectVerInstallFile

	When you attempt to install an application using an Autorun file, the installation fails.
	EmulateCreateProcess

	Attempts to install the application with InstallShield version 5.0 fail when user names with East Asian characters are used.
	IgnoreOemToChar

	The application appears to become unresponsive during setup because a dialog box containing an error message occupies space beyond the visible desktop.
	KeepWindowOnMonitor

	The application fails to install.
	RedirectEXE

	Setup fails unexpectedly.
	EmulateLZHandles

	On a dual processor machine, an application fails during installation or when you attempt to start it.
	SingleProcAffinity

(continued)

Table 3.19 Application Compatibility Fixes for Installation Problems (continued)

	Symptom
	Application Compatibility Fix

	The application returns the “<x> not installed correctly, please install again” error message, where x is an application component.
	SyncSystemAndSystem32

	The application cannot find a path during installation when a double-byte character set (DBCS) user name is used.
	HandleDBCSUserName

	The application cannot find a path during installation when a DBCS user name is used.
	HandleDBCSUserName2

	Access violations occur during installation.
	FileVersionInfoLie

	During installation, when the application is searching for the presence of previous versions, an access violation occurs.
	LimitFindFile

	When the application is installed, an access violation occurs.
	RemoveBroadcastPostMessage

	When the application is installed, an access violation occurs.
	IgnoreFreeLibrary

	The application does not install from an Autorun file, causing an access violation.
	HideDisplayModes

	During installation, the application returns the “Cannot open files” error message.
	FailOpenFile

	After you run the setup program, the application returns the “Access violation” error message.
	DuplicateHandleFix

	The application returns the “Unknown button state” error message.
	DisableW2KOwnerDrawButtonStates

	You are notified that a certain DLL is required for installation.
	EmulateGetProfileString

	The Configuration menu is blank. After the application’s setup program finishes, InstallShield fails.
	ForceWorkingDirectoryToEXEPath

	If you do not register the application, the application does not start.
	HeapLookasideFree

	The application fails to start.
	RedirectEXE

	When the application is started, an access violation occurs.
	RemoveBroadcastPostMessage

	The system fails to restart after you confirm the application’s restart request.
	EnableRestarts

	The application fails to register services.
	RedirectEXE

	The Readme.txt file cannot be opened.
	HandleRegExpandSzRegistryKeys

Table 3.20 identifies the application compatibility fixes that you can apply when entering data with the keyboard or using certain key sequences causes problems.

Table 3.20 Application Compatibility Fixes for Keyboard Input Problems

	Symptom
	Application Compatibility Fix

	When you attempt to type in logon information, the application returns the “Unexpected error” message.
	AliasDXDC

	The application does not correctly display the shortcut keys.
	DisableKeyboardCues

	Using the ALT+TAB key combination causes the application window to become blank.
	IgnoreAltTab

	The application becomes unresponsive when you use the ALT+TAB key combination.
	IgnoreAltTab

	The application stops responding when you use the SHIFT key, the CTRL key, or the ALT key 5 times or more in succession.
	DisableStickyKeys

	The keyboard locks up during normal operation.
	EmulateUSER

	The keyboard is sluggish or doesn’t function at all, and the system becomes generally unresponsive.
	LowerThreadPriority

Table 3.21 identifies the application compatibility fixes that you can apply when the application has problems with sound, graphics, animation, or video.

Table 3.21 Application Compatibility Fixes for Multimedia Problems

	Symptom
	Application Compatibility Fix

	Sounds do not play.
	DelayWinMMCallback

	No sound or limited sound plays.
	CorrectACMStreamOpen

	Sounds do not play because the application does not detect sound devices.
	AddWritePermissionsToDeviceFiles

	The application cannot use the sound hardware, so it returns the “Sound hardware already in use” error message.
	AddWritePermissionsToDeviceFiles

	Sounds do not play with Audio Compression Manager drivers.
	CorrectACMArgs

	The application returns the “Active Movie Control: An object or name was not found” error message.
	CorrectActiveMoviePath

	A message indicates that the sound device driver failed to load.
	CorrectSoundDeviceId

	The sound loops perpetually, and the application does not always respond to shutdown requests.
	EmulatePlaySound

(continued)

Table 3.21 Application Compatibility Fixes for Multimedia Problems (continued)

	Symptom
	Application Compatibility Fix

	Audio Video Interleaved (.avi) files continue to run behind the menu screen.
	ForceAVIWindow

	The cursor freezes momentarily during background music changes.
	IgnoreMCISTOP

	The application attempts to send sound to the wrong device (usually to an audio card instead of to the desired USB devices).
	WaveOutUsePreferredDevice

Table 3.22 identifies the application compatibility fix that you can apply when network connections cannot be set up correctly.

Table 3.22 Application Compatibility Fix for a Network Connection Problem

	Symptom
	Application Compatibility Fix

	The application automatically selects Serial Connection when you attempt to select a network connection.
	DirectPlayEnumOrder

Table 3.23 identifies the application compatibility fix that you can apply when permission problems occur.

Table 3.23 Application Compatibility Fix for a Permissions Problem

	Symptom
	Application Compatibility Fix

	Insufficient user rights produce errors.
	LUATrackFS

Table 3.24 identifies the application compatibility fixes that you can apply when printing does not work correctly.

Table 3.24 Application Compatibility Fixes for Printing Problems

	Symptom
	Application Compatibility Fix

	Access violations occur when the application starts or when it searches for printers. Consequently, the application returns error messages when you attempt to find, select, or print to a printer.
	EmulatePrinter

	The application shuts down unexpectedly when you attempt to print.
	ForceAnsiWindowProc

Table 3.25 identifies the application compatibility fixes that you can apply when invalid registry entries cause problems.

Table 3.25 Application Compatibility Fixes for Registry Problems

	Symptom
	Application Compatibility Fix

	The application makes a call to a statically loaded .dll file that has not yet been loaded.
	InjectDll

	When you use a limited user account (LUA), the application returns the error message “Failed to update system registry. Please try using RegEdit.”
	LUARedirectFS

Table 3.26 identifies the application compatibility fixes that you can apply when Start menu entries or shortcuts are not created correctly or do not work correctly.

Table 3.26 Application Compatibility Fixes for Start Menu and Shortcut Problems

	Symptom
	Application Compatibility Fix

	Shortcuts are not created for all users.
	CorrectFilePaths

	Shortcuts are not created for all users.
	LUARedirectReg

	A desktop shortcut is not created.
	ForceAnsiGetDisplayNameOf

	Shortcuts are not removed for all users.
	CorrectFilePathsUninstall

	valid and an invalid shortcut appear in the Start menu during application installation.
	DelayShowGroup

	The application does not appear on the Start menu.
	ProfilesEnvStrings

	The application does not appear in the Start menu.
	ProfilesGetFolderPath

	The application does not appear in the Start menu.
	ProfilesRegQueryValueEx

	Shortcuts do not appear on the desktop.
	ProfilesEnvStrings

	Shortcuts do not appear on the desktop.
	ProfilesGetFolderPath

	Shortcuts do not appear on the desktop.
	ProfilesRegQueryValueEx

Table 3.27 identifies the application compatibility fixes that you can apply when problems occur during application startup or during the startup of a process initiated by the application.

Table 3.27 Application Compatibility Fixes for Startup Problems

	Symptom
	Application Compatibility Fix

	The setup program fails to install the application.
	HandleWvsprintfExceptions

	The application cannot load.
	IgnoreDebugOutput

	The application does not start after it is installed.
	EmulateGetStdHandle

	The application does not start, but displays error messages or indicates that an access violation has occurred.
	StackSwap

	When starting, the application causes an access violation.
	HeapPadAllocation

	When you attempt to start the application, it returns an error message indicating that the application is not installed.
	FailGetStdHandle

	When you attempt to start the application, it returns an error message indicating that the application must be installed.
	EmulateGetStdHandle

	The application fails to start, and returns an error message.
	EmulateVerQueryValue

	When the application is started directly after setup is complete, it returns the “No Disc Inserted” error message because it does not detect the CD drive.
	AddWritePermissionsToDeviceFiles

	An access violation occurs when the application starts.
	EmulateGetDeviceCaps

	When you start the application, it returns the “Computer memory full” error message.
	GlobalMemoryStatusLie

	When you attempt to start the application, it returns the “Component failed to be located” error message.
	VirtualRegistry

	The application stops responding immediately after starting.
	HideDisplayModes

	The application quits immediately after starting.
	HeapClearAllocation

	The application becomes unresponsive after starting.
	AddWritePermissionsToDeviceFiles

	The application becomes unresponsive or closes unexpectedly shortly after starting.
	EmulateFindHandles

	When the application starts, it returns an exception error.
	IgnoreCoCreateInstance

	When the application starts, it returns the “.dll not compatible with the application” error message.
	LoadLibraryCWD

	A component or file is not correctly registered or is missing, or the application returns an “Invalid” error message.
	CorrectFilePathInSetDlgItemText

	When the application starts, a window containing only a cursor opens.
	IgnoreException

(continued)

Table 3.27 Application Compatibility Fixes for Startup Problems (continued)

	Symptom
	Application Compatibility Fix

	The application returns the “Component failed to initialize” error message.
	DelayDllInit

	When you start the application, it automatically minimizes, but sound effects continue to play. The application might or might not run when selected from the taskbar.
	NoGhost

	Runtime errors occur when you start the application or when you start specific components.
	SetEnvironmentVariable

	When the application expects to find a joystick, it quits unexpectedly.
	EmulateJoystick

	When you attempt to start executable programs, such as Scandisk, Disk Defragmenter, or Help, the application displays an error message.
	EmulateMissingEXE

	When the application runs on a high-end machine, its window is blank or it displays an “Access violation” error message.
	EmulateSlowCPU

	When you attempt to start two instances of the application, the application returns an error message.
	EmulateToolHelp32

	Starting a Safedisk program causes access violations.
	FailCloseProfileUserMapping

	Logging on and starting services take a long time.
	FixServiceStartupCircularDependency

	The application returns a message asking that the correct CD be put in the drive or stating that there is no CD in the drive.
	ForceCDStop

	The application fails to run its startup movie (.avi file) and shuts down.
	ForceCoInitialize

	The application returns the “DirectX does not support the Windows version on the system” error message.
	ForceDXSetupSuccess

	The application does not run in hardware mode.
	ForceSimpleWindow

	The Autorun menu does not appear.
	CorrectBitmapHeader

	The Autorun dialog box does not get refreshed after the application is installed, so that the option to start the application is still disabled.
	HandleAPIExceptions

	The application becomes unresponsive immediately after starting.
	IgnoreException

	The application displays message boxes that give debugging or other extraneous information.
	IgnoreMessageBox

	The application fails to start or performs slowly.
	IgnoreScheduler

(continued)

Table 3.27 Application Compatibility Fixes for Startup Problems (continued)

	Symptom
	Application Compatibility Fix

	The application does not start, and it returns the “Desktop is running in 0 bit color mode” error message.
	LazyReleaseDC

	The application does not start, or you get error messages when you attempt to start it.
	MapMemoryB0000

	When the application is run by a user other than the user who installed it, it displays error messages such as “Cannot find <X>” (where x is a folder or file that does exist on the system) or “<X> components were not found or are corrupt, run setup.”
	PopulateDefaultHKCUSettings

	When you start the application, it returns the “Not a valid Win32 application” or “Unable to run the command” error message.
	RecopyExeFromCD

	An access violation occurs when you attempt to start another program through the application by linking to Windows components (Internet Explorer Web Links or Windows Explorer folders, for example).
	RemoveDDEFlagFromShellExecuteEx

	When the application attempts to start Windows components (such as Microsoft Paint), it returns the “File or program cannot be found” error message.
	SearchPathInAppPaths

	The application returns the “Files cannot be found or do not exist” error message.
	SetEnvironmentVariable

	Entry-point errors occur for functions within earlier versions of Cryptsys and DirectX DLLs.
	TerminateExe

	The application returns the error message “WinG32.dll has been incorrectly installed in the system folder. Please move it to the System32 folder.”
	WinG32SysToSys32

Table 3.28 identifies the application compatibility fixes that you can apply when the telephone dialer does not work correctly.

Table 3.28 Application Compatibility Fixes for Telephony Application Programming Interface (TAPI) Problems

	Symptom
	Application Compatibility Fix

	A runtime error occurs in Mfc40.dll when the call is disconnected.
	IgnoreTAPIDisconnect

	The phone dialer does not hang up.
	IgnoreTAPIDisconnect

Table 3.29 identifies the application compatibility fixes that you can apply when the application expects a version of Windows that is not available.

Table 3.29 Application Compatibility Fixes for Versioning Problems

	Symptom
	Application Compatibility Fix

	The application requests that Windows 95 be installed.
	Win95VersionLie

	The application requests that Windows 98 be installed.
	Win98VersionLie

	The application requests that Windows NT 4.0 Service Pack 5 be installed.
	WinNT4SP5VersionLie

	The application requests that Windows 2000 be installed.
	Win2000VersionLie

	The application requests that Windows 2000 Service Pack 1 be installed.
	Win2000SP1VersionLie

	The application requests that a previous version of DirectX be installed.
	Win2000VersionLie

	The application requests that a previous version of DirectX be installed.
	WinNT4SP5VersionLie

	The application requests that a previous version of DirectX be installed.
	Win2000SP1VersionLie

	The application reports that it will not function on a Windows NT system.
	Win95VersionLie

	The application reports that it will not function on a Windows NT system.
	Win98VersionLie

Table 3.30 identifies the application compatibility fixes that you can apply when application windows do not work correctly.

Table 3.30 Application Compatibility Problems for Window Management Problems

	Symptom
	Application Compatibility Fix

	An unexpected dialog box appears.
	ForceShellLinkResolveNoUI

	A dialog box does not come to the foreground; you must press ALT+TAB to see it.
	GiveupForeground

Table 3.31 includes miscellaneous application compatibility fixes that do not fit within any other category.

Table 3.31 Application Compatibility Fixes for Miscellaneous Problems

	Symptom
	Application Compatibility Fix

	A spawned process fails to operate properly, although the parent process functions normally. For example, Setup.exe works correctly, but the spawned process, Setup2.exe, fails.
	PropagateProcessHistory

	The application does not display system information properly when you use the System Info button in the About dialog box.
	RemoveIpFromMsInfoCommandLine

Identifying Strategies for Resolving
Special Problems
Some special problems cannot be resolved by applying application compatibility fixes or by debugging and modifying source code. If application compatibility fixes do not resolve an application problem, try one of the following solutions.

Reinstall the application by using an Administrator account

If the problematic application was written for Windows 95, Windows 98, or Windows Millennium Edition, use an Administrator account to install the application. These versions of Windows did not differentiate between Administrator and limited user accounts, so an application that runs on these versions might write to a location that is not allowed by Windows XP Professional.

Use the current Microsoft Virtual Machine

Use the most current version of the Microsoft Virtual Machine, which enables Java programs to run on Windows.

Remove and reinstall the application after upgrading to Windows XP Professional

If you upgraded the computer to Windows XP Professional, and the application is listed in the Windows Catalog as compatible with Windows XP Professional, try to remove and then reinstall the application after performing the upgrade. If removing and reinstalling the application on Windows XP Professional does not solve the problem, the application might not have been entirely removed. Contact the application vendor for specific instructions on how to remove the application manually. For example, it might be necessary to remove certain folders or registry entries in order to fully reinstall the application.

Verify MDAC and DirectX versions

If the application uses Microsoft Data Access Components (MDAC) or DirectX, ensure that you are using the correct versions. Windows XP Professional with Service Pack 1 and Windows Server 2003 support MDAC version 2.7 with Service Pack 1 and DirectX version 9.0. Some older applications attempt to install an earlier version of MDAC or DirectX, but Windows File Protection replaces the earlier version with the newer version. If the application requires the earlier version, errors can occur. In this case, you might need to create a redirection file, as described in the following section, to ensure that the required version is loaded when the application runs.

Load earlier versions of .dll files

Some older applications require earlier versions of .dll files than are supplied by Windows XP Professional or Windows Server 2003. If a newer version of a .dll file is loaded when an application runs, problems can occur. To ensure that the application uses the version of the .dll file that it requires, create a redirection file. The redirection file must be created in the same directory as the .dll files and the application.

A redirection file contains no data or information (the contents of the redirection file are ignored), but its name must have the format ApplicationExecutable.local. For example, if an application’s name is Editor.exe, the redirection file must be named Editor.exe.local.

Even if you do not use a redirection file, always install the .dll files for an application in the same directory as the application. Doing so ensures that the application does not overwrite copies of the .dll files, which might be used by other applications. Doing so also ensures that the application loads the .dll files that it requires.

Placing a redirection file in the directory with an application ensures that all the .dll files in that directory are loaded when the application runs, instead of the .dll files supplied by the operating system. Without a redirection file, the .dll files supplied by the operating system are loaded when the application runs.

[image: image34.wmf]
Important

You do not need to use a redirection file with Windows XP Professional with Service Pack 1 or higher, or with Windows Server 2003. You do need to use a redirection file with Windows XP Professional without Service Pack 1.

Create application manifest files

As you migrate applications to Windows XP Professional or Windows Server 2003, you should write an application manifest, a .man file, for each application. The manifest is a text file in XML format that lists the dynamic-link libraries that the application should be executed with, along with their version numbers. In the manifest, list the DLL versions with which the application was originally built and tested. When Windows XP Professional or Windows Server 2003 runs an .exe file for which a manifest exists, it loads only the DLL versions specified in the manifest. For more information about specific DLLs, see the DLL Help Database link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Change the short date format

Some applications that were designed for Windows 95 do not handle short dates correctly when they run on Windows XP Professional. If an application does not accept short dates that are entered by a user, try changing the short date format in Regional and Language Options. For example, if the short date format is M/d/yyyy (the default), try changing the format to MM/dd/yyyy.

[image: image35.wmf]
To change the short date format on Windows Server 2003

1. Open Regional and Language Options in Control Panel.

2. On the Regional Options tab, click Customize.

3. On the Date tab, next to Short date format, select a short date format.

[image: image36.wmf]
To change the short date format on Windows XP Professional

1. Open Control Panel, and then click Date, Time, Language, and Regional Options.

2. Click Regional and Language Options.

3. On the Regional Options tab, click Customize.

4. On the Date tab, next to Short date format, select a short date format.

Verify that the Kodak Image Edit control is not required

Ensure that the application does not depend on the Kodak Image Edit control. This control has been removed from Windows XP Professional and Windows Server 2003.

Verify the length of network printer names

Some older applications fail when they attempt to print to a network printer with a name longer than 31 characters. To prevent this problem, create a local connection to the network printer for the application.

[image: image37.wmf]
To create a local printer connection

1. Start the Add Printer Wizard.
2. On the Local or Network Printer page, select Local printer attached to this computer, and clear Automatically detect and install my Plug and Play printer.

3. On the Select a Printer Port page, select the port if it is listed. Otherwise, select Create a new port, and then for Type of Port, select Local Port.

4. Click Next to display the Port Name window, and enter the port name for the printer in the format \\PrintServer\PrinterName.

5. On the Install Printer Software page, select the printer manufacturer and the appropriate printer.

6. On the Use Existing Driver page, select Keep existing driver, if there is one.

7. On the Name Your Printer page, type a name using fewer than 31 characters and finish the wizard as appropriate for your environment.

Deploying and Distributing Applications and .Sdb Files

After adding application compatibility fixes and modes to your custom application compatibility databases (.sdb files), you must deploy or distribute the .sdb files to destination computers in your organization. Usually, you also must deploy or distribute the applications to which the fixes apply. In this context, deploying means you are installing .sdb files and applications during an operating system rollout. Distributing means that you are installing .sdb files and applications as part of your ongoing operations after rolling out an operating system.

Typically, an automated installation method, such as image-based installation or unattended installation, is used to deploy .sdb files and applications to destination computers during an operating system rollout. By contrast, a software management mechanism, such as Group Policy Software Installation, logon scripts, or Software Update Services (SUS), is typically used to distribute .sdb files and applications to destination computers that already have an operating system installed.

Your deployment team is usually responsible for deploying applications and .sdb files during an operating system rollout. Your operations team is usually responsible for distributing applications and .sdb files on destination computers that already have operating systems installed.

Figure 3.11 shows where the deployment and distribution tasks fit into the overall application compatibility planning, testing, and deployment process.

Figure 3.11 Deploying and Distributing Applications and .Sdb Files

[image: image38.wmf]
This section describes how to use various tools to deploy and distribute applications and .sdb files. This section does not help you choose a deployment or distribution tool. That choice depends on several factors, including your deployment design, your IT standards and practices, and your operational procedures. It is assumed that you have already chosen a deployment or distribution tool based on these factors. For more information about choosing an automated deployment tool, see “Choosing an Automated Installation Method” in Automating and Customizing Installations of this kit. For more information about choosing an application distribution tool, see the “Application Deployment Using Microsoft Management Technologies” white paper, available through the Application Deployment link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Reviewing Application Deployment and Distribution Tools

Microsoft provides several tools to help you deploy or distribute applications and .sdb files. These tools include:

· Deployment tools, such as the System Preparation (Sysprep) tool and Remote Installation Services (RIS). You use these automated installation tools to deploy applications and .sdb files during an operating system rollout.

· Distribution tools, such as SUS, Group Policy Software Installation, logon scripts, and SMS. You use these tools to distribute applications and .sdb files to computers that already have an operating system installed.

In addition, Microsoft provides two tools that you use in conjunction with the deployment tools and the distribution tools to package and install applications and .sdb files. These tools are:

· Application Compatibility Database Installer (Sdbinst.exe), which you use to install and register .sdb files.

· Windows Installer, which consists of two tools: a software packaging tool that you use to package application installation files and .sdb files, and an installer tool that you use to install the packages.

This section provides you with an overview of these tools.

Deployment Tools

There are three primary methods of deploying applications and .sdb files during an operating system rollout: unattended installation, image-based installation, and RIS installation. Each method requires one or more tools.

Unattended installation

Unattended installation is a method of automating the Windows Setup program so that no user input is required when you install an operating system or applications. To perform unattended installations, you need to create an answer file that contains answers to the questions that Windows Setup normally prompts for during an installation. By using an answer file to control Windows Setup, you can automate the entire installation process, including the installation of applications and .sdb files. Unattended installation is the most flexible method of deploying applications and .sdb files: It can be used to perform operating system upgrades or clean installations on computers with different hardware and software configurations.

Image-based installation

Image-based installation is a method of copying, also known as cloning, preconfigured operating systems and software applications onto clients and servers. To perform image-based installations, you need the Sysprep tool, which can be found on the Windows XP Professional or Windows Server 2003 operating system CD, and you need a third-party disk-imaging tool. Image-based installation is the fastest method of installing operating systems and applications, but you cannot use it to perform operating system upgrades.

RIS installation

RIS installation is a method of cleanly installing an operating system and applications across a network with minimal end-user interaction. RIS uses Pre-Boot eXecution Environment (PXE) technology to enable client computers without an operating system to start up and connect remotely over a TCP/IP network connection to a RIS server, which installs a supported operating system. RIS installations require substantial planning and design, but are an efficient deployment method if you need to install clean operating systems and preconfigured applications onto a large number of clients.

To obtain the unattended and image-based installation tools, open the Support\Tools folder on any Windows XP Professional or Windows Server 2003 operating system CD, and then open Deploy.cab. The Readme.txt file in Deploy.cab explains how to install and use the tools. The RIS installation tools are built into Windows Server 2003. For more information about unattended installations, image-based installations, and RIS installations, see “Designing Unattended Installations,” “Designing Image-based Installations with Sysprep,” and “Designing RIS Installations,” respectively, in Automating and Customizing Installations of this kit.

Distribution Tools

The four most commonly used methods of distributing applications and .sdb files are the use of Group Policy Software Installation, logon scripts, the Software Update Services (SUS), and SMS.

Group Policy Software Installation

You can use Group Policy Software Installation to centrally install and manage software applications throughout an organization. Using this management system, you can distribute applications and .sdb files to groups of users and computers. It is the most common method of distributing applications and .sdb files to computers that already have an operating system installed. Active Directory is required in order to use Group Policy Software Installation.

Logon scripts

Logon scripts run when a user logs on to a computer. Logon scripts typically are written as command (.cmd) files, batch (.bat) files, or Microsoft® Visual Basic® Scripting Edition (.vbs) files.

Software Update Services (SUS)

You can use SUS to download updates for Windows XP Professional and Windows Server 2003. The updates can include updated versions of the prepackaged application compatibility databases and updated versions of the corresponding code segments that run when an application needs an application compatibility fix, application compatibility mode, or Application Help message. SUS provides dynamic notification of updates to computers, and it provides a simple, automatic solution for distributing updates to networked clients and servers.

SMS

You can use SMS to distribute applications and .sdb files. SMS includes features such as software metering and software distribution-point population and maintenance. SMS does not require Active Directory.

[image: image39.wmf]
Note

You also can use a third-party software management program to distribute applications and .sdb files.

Group Policy Software Installation and SUS are built into Windows Server 2003. For more information about Group Policy, see “Group Policy” in Help and Support Center for Windows Server 2003 and “Deploying a Managed Software Environment” in Designing a Managed Environment of this kit. For more information about SUS, see the “Software Update Services Deployment” white paper, available through the Software Update Services link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources, and “Deploying Microsoft Software Update Services” in Designing a Managed Environment of this kit.

SMS is a Microsoft product available for purchase. For more information about SMS, see the SMS Product Information link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Application Compatibility Database Installer

The Application Compatibility Database Installer (Sdbinst.exe) installs and registers your .sdb files on destination computers. Sdbinst.exe is a command-line program that is installed by default into the systemroot\System32 folder on computers running Windows XP Professional or Windows Server 2003. Although you can use Compatibility Administrator to install and register .sdb files, using Sdbinst.exe is the only way to automate this task on a large number of computers.

To use Sdbinst.exe, you first copy your .sdb files to the destination computers, and then run Sdbinst.exe on each destination computer. Usually, you copy your .sdb files to a subfolder in the systemroot\AppPatch folder (for example, systemroot\AppPatch\Custom) on each of the destination computers. This keeps all of the .sdb files in one place, because the prepackaged databases are stored in the systemroot\AppPatch folder on Windows XP Professional and Windows Server 2003. If you prefer, you can copy your application compatibility database files to a different folder, but if you do this you must set permissions on the folder granting the Everyone group Read & Execute access and the Administrators group Full Control access. This ensures that your application fixes get implemented regardless of who runs an application. It also ensures that only those users with Administrator credentials can register or alter your application compatibility database files.

Sdbinst.exe requires the following syntax:

sdbinst [-?] [-q] [-u] [-g] [-n] ApplicationCompatibilityDatabase.sdb | {GUID} | “InternalApplicationName”
The parameters are defined in Table 3.32.

Table 3.32 Command-Line Parameters for Sdbinst.exe

	Parameter
	Description

	-q
	Runs Sdbinst.exe in quiet mode, which suppresses message boxes during the database installation process. Use this parameter if you are using an automated installation method to install application compatibility databases.

	-u
	Uninstalls an application compatibility database. To identify the application compatibility database that is to be uninstalled, you must specify a file name, a globally unique identifier (GUID), or an internal name.

	-g
	Specifies the GUID of the application compatibility database that you want to uninstall. Use only with the -u parameter. You must specify a GUID if you use this parameter.

(continued)

Table 3.32 Command-Line Parameters for Sdbinst.exe (continued)

	Parameter
	Description

	-n
	Specifies the internal name of the application compatibility database to be uninstalled. This is the name assigned internally to the database when it was created in Compatibility Administrator. Use only with the -u parameter. You must specify the internal name of the database if you use this parameter.

	ApplicationCompatibilityDatabase
	Specifies the name of the .sdb file that you want to install or uninstall.

	GUID
	Specifies the globally unique identifier of the application compatibility database that you want to uninstall. Use only with the -g parameter.

	InternalApplicationName
	Specifies the name of the application compatibility database that you want to uninstall. This is the name assigned internally to the database when it was created in Compatibility Administrator. Use only with the -n parameter.

	-?
	Displays the Help documentation for Sdbinst.exe.

Windows Installer

Windows Installer consists of several tools and features, two of which are useful for deploying and distributing applications and .sdb files: Windows Installer packages (.msi files), and the Windows Installer tool (Msiexec.exe). As a stand-alone tool, Msiexec.exe is not a solitary solution for deploying and distributing applications and .sdb files. You use Msiexec.exe in conjunction with your deployment or distribution tools. Likewise, you use .msi files in conjunction with your deployment or distribution tools.

Windows Installer packages

A Windows Installer package (.msi file) contains all of the information that the Windows Installer service requires to run an application’s setup program and to install and configure the application. In addition, a Windows Installer package can contain any files that are required by the application’s setup program, such as dynamic-link library (.dll) files, information (.inf) files, executable (.exe) files, or cabinet (.cab) files. Packaging your applications and your .sdb files into Windows Installer packages makes application deployment and distribution easier and more efficient, and prevents you from having to manage numerous installation files for each of your applications. Application developers usually create Windows Installer packages at the end of the software development process, but you can create a Windows Installer package after an application has been developed.

You can use either Microsoft® Visual Studio® .NET development system or a third-party software program to create Windows Installer packages. For more information about creating Windows Installer packages, see the Windows Installer Software Developer’s Kit (SDK) link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Windows Installer tool (Msiexec.exe)

Msiexec.exe carries out the instructions that are contained in a Windows Installer package. Msiexec.exe performs all installation-related tasks, including copying files onto the hard disk, modifying the registry, and creating shortcuts on the desktop. Msiexec.exe is a command‑line tool that is built into Windows XP Professional and Windows Server 2003.

For more information about Msiexec.exe command-line syntax and usage, see “Msiexec” in Help and Support Center for Windows Server 2003.

Deploying Applications and .Sdb Files

You can use any of the following automated installation methods to deploy applications and .sdb files during an operating system rollout: unattended installation, image-based installation with the Sysprep tool, and RIS installation. The method that you use depends on several factors, such as the operating system that you are installing, your organization’s network and hardware configuration, and the applications that you are deploying. With a few exceptions, no single factor determines which installation method you should use.

This section does not provide guidance for choosing an automated installation method. It is assumed that you have evaluated all of the factors that affect your choice of an automated installation method already, and that you have determined which automated installation method best suits your needs. It is also assumed that you understand how to use the tools associated with each of these automated installation methods.

[image: image40.wmf]
Note

For more information about unattended installation and image-based installation with Sysprep, see the Microsoft® Windows® Server 2003 Corporate Deployment Tools User’s Guide (Deploy.chm and Ref.chm). Deploy.chm and Ref.chm are included in the Deploy.cab file in the Support folder on the Windows Server 2003 operating system CD. Deploy.chm and Ref.chm must be stored in the same folder. You can open these files on the operating system CD, or open them on your computer by installing Deploy.cab in a folder on your computer.

Deploying Applications and .Sdb Files During
Unattended Installations

To deploy applications and .sdb files during an unattended installation, you need to configure the following items.

Your distribution share

Add your applications and .sdb files to your distribution share so that they can be installed on your destination computers.

Your Cmdlines.txt file

Add the appropriate commands to your Cmdlines.txt file so that Sdbinst.exe runs and installs your .sdb files after an operating system is installed on a destination computer, but before the destination computer restarts and a user logs on.

The [GuiRunOnce] section of your answer file

Add the appropriate commands to the [GuiRunOnce] section of your answer file so that your applications are installed on each of your destination computers after the computer restarts and a user logs on.

Your unattended installation must adhere to the following guidelines:

· You cannot perform an unattended installation from a Windows XP Professional or Windows Server 2003 operating system CD. You must use a distribution share.

· You cannot name your answer file Winnt.sif. You must name it Unattend.txt or another name. You can use the name Winnt.sif only if you are starting your destination computers from a Windows XP Professional or Windows Server 2003 operating system CD, which you cannot do if you are deploying applications or .sdb files.

· You cannot install applications or .sdb files during an unattended upgrade. This is because you cannot use a distribution share during an unattended upgrade, and you need to use a distribution share to install applications and .sdb files.

Configuring Your Distribution Share

You need to add the following files to your distribution share to deploy applications and .sdb files during an unattended installation.

.Sdb files

Add your .sdb files to your distribution share so that the .sdb files are copied to every destination computer. Although you can save .sdb files in any folder on a destination computer, the most commonly used location is a folder named systemroot\AppPatch\Custom. To copy your .sdb files to the systemroot\AppPatch\Custom folder on each of your destination computers, save your .sdb files in the OEM\$$\AppPatch\Custom folder of your distribution share. To save your .sdb files to another folder on your destination computers, save your .sdb files in a corresponding folder in the OEM folder of your distribution share. For example, if you want to save your .sdb files in systemdrive\Myapps\Sdbfiles, save your .sdb files in the OEM\$1\Myapps\Sdbfiles folder of your distribution share.

Installation files for applications

Add the installation files for your applications to your distribution share. This ensures that the installation files are copied to every destination computer, and that the files are available during your unattended installation. You can save installation files, such as .msi files, in any folder that you choose on a destination computer. For example, if you are installing an application called Myapp, you might save the installation files for Myapp in systemdrive\Apps\Myapp. To create this folder structure on every destination computer, add OEM\$1\Apps\Myapp to your distribution share.

For more information about structuring your distribution share, see “Designing Unattended Installations” in Automating and Customizing Installations of this kit.

Configuring Your Cmdlines.txt File

To install .sdb files during an unattended installation, you need to configure your Cmdlines.txt file. If you are not already using a Cmdlines.txt file to perform other installation and configuration tasks during an unattended installation, you need to create a Cmdlines.txt file.

[image: image41.wmf]
To create a Cmdlines.txt file

1. Use Notepad, or any text editor, to create a text file named Cmdlines.txt.

2. Add the following section to the Cmdlines.txt file:

[Commands]

3. Save the Cmdlines.txt file in the OEM folder of your distribution share.

4. Add the following section, entry, and value to your unattended installation answer file:

[Unattended]
OemPreinstall = Yes

[image: image42.wmf]
To configure a Cmdlines.txt file to install .sdb files

· Add the Sdbinst.exe command, with the appropriate parameters, to the [Commands] section of your Cmdlines.txt file. The command and associated parameters must be enclosed in quotation marks.

Be sure to use the /c parameter with the Cmd.exe command. This terminates Cmd.exe when Sdbinst.exe has finished running. Also, be sure to use the -q parameter with the Sdbinst.exe command, which instructs Sdbinst.exe to run in quiet mode. For example, to install systemroot\AppPatch\Myapp.sdb, create the following entry in your Cmdlines.txt file, below the [Commands] section heading:

"cmd.exe /c sdbinst -q %systemroot%\AppPatch\Myapp.sdb"

Configuring the [GuiRunOnce] Section in Your Answer File

To install applications on a destination computer during an unattended installation, you need to add commands to the [GuiRunOnce] section in your answer file. The commands that you use depend on how you are installing the application. If you are installing an application that is packaged into an .msi file, use the Msiexec command to start the Windows Installer tool. If you are installing an application that is not packaged into an .msi file, use whatever command is necessary to run the application’s setup program (usually, the command is Setup).

For example, to install an application that is packaged into an .msi file, add the following command to the [GuiRunOnce] section of your answer file:

"cmd.exe /c msiexec /qn /i Myapp.msi"

The /c parameter instructs the command console program to close when Msiexec.exe stops running. The /i parameter instructs the Windows Installer program to install the .msi package, and the /qn parameter instructs the Windows Installer program to run without displaying a user interface.

Likewise, to install an application that is not packaged into an .msi file and that has its own setup program named Setup.exe, add the following command to the [GuiRunOnce] section of your answer file:

"cmd.exe /c Setup.exe"

Regardless of whether you install applications with the Windows Installer program or with an application’s setup program, you must adhere to the following guidelines in setting up an unattended installation.

Installation programs cannot require a restart

You can automate installation tasks only if you can prevent the installation program from restarting the computer. When a computer restarts, all remaining commands in the [GuiRunOnce] section are lost. If the system restarts before running the commands listed in the [GuiRunOnce] section, the remaining commands will not run. Therefore, you need to suppress restarts. If you cannot suppress a restart within the installation program, you can try to repackage the application into a Windows Installer package by using a third‑party application. For more information about Windows Installer packaging, see the Windows Installer Software Developer’s Kit (SDK) link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Installation programs cannot rely on the Windows Explorer shell

The Windows Explorer shell is not loaded when the operating system starts running commands, programs, scripts, or batch files that are listed in the [GuiRunOnce] section of an answer file. In some cases, the application vendor can give you an updated installer program that does not rely on the Windows Explorer shell. If the vendor cannot provide this, you might be able to repackage the application as a Windows Installer package (.msi file).

Installation programs might need to be run from a batch file

Installation programs often start and stop several different processes. In some cases when you are installing multiple applications, this can inadvertently cause the next command listed in the [GuiRunOnce] section to start before the previous command finishes running. When this occurs, the second installation program usually fails. To prevent this, you can run the installation programs from batch files by using the Start command with the /wait parameter. This forces each installation program to run until it is completed before the next command listed in [GuiRunOnce] runs. For more information about using the start command to run installation programs in batch files, in Help and Support Center for Windows Server 2003, click Tools, and then click Command-line reference A-Z.

Deploying Applications and .Sdb Files During
Image-based Installations

Three primary methods are available for deploying applications and .sdb files during an image-based installation:

· You can install and configure your applications and .sdb files on the master installation and then create a disk image of the master installation. The master installation is the reference computer that contains the operating system, software applications, and configuration settings that you plan to install on destination computers in your organization. When you copy the disk image to a destination computer, and then start the destination computer, the applications and .sdb files will be installed, configured, and ready for use by an end user on the destination computer.

· You can install applications and .sdb files by using a Sysprep.inf file to automate Mini‑Setup. Mini‑Setup is a subset of Windows Setup that gathers and configures user-specific information when a user starts a destination computer for the first time. This method uses a Cmdlines.txt file and the [GuiRunOnce] section of the Sysprep.inf file.

· You can use the Factory mode feature of Sysprep, and a Winbom.ini file, to attach or detach applications and run Sdbinst.exe on each destination computer. When you attach or detach applications, your application files and .sdb files exist on your disk image, but the applications and .sdb files are not installed. Then, when you copy the disk image to a destination computer and start the destination computer, you can use a Winbom.ini file to attach (install) or detach (remove) your application files and .sdb files.

The first and second methods are used most commonly in corporate environments in which a single standard software configuration is deployed. The Factory mode method is most often used in factory environments or corporate environments where several different software configurations are being deployed.

Installing and Configuring Applications and .Sdb Files on a Disk Image

To deploy installed and configured applications and .sdb files on a disk image:

1. Install and configure your applications on your master installation.

2. Copy your .sdb files to your master installation. Usually, .sdb files are saved in the systemroot\AppPatch\Custom folder, but you can save the files in any folder.

3. Run Sdbinst.exe on your master installation to install and register your .sdb files.

4. Run the Sysprep tool on your master installation.

5. Run your disk imaging program, and save the disk image in a shared folder or on some type of removable media.

6. Use your disk imaging tool to copy the disk image to your destination computers.

This is only a summary of the tasks that you need to perform to deploy installed and configured applications and .sdb files on a disk image. For more information about designing and performing an image-based installation, see “Designing Image-based Installations with Sysprep” in Automating and Customizing Installations of this kit.

Installing and Configuring Applications and .Sdb Files During Mini-Setup

To install and configure applications and .sdb files during Mini-Setup:

1. Copy your application files to the Sysprep folder on your master installation. Do not install the applications.

2. Copy your .sdb files to your master installation. Usually, .sdb files are saved in the systemroot\AppPatch\Custom folder, but you can save the files in any folder.

3. Create and configure your Cmdlines.txt file as described in “Deploying Applications and .Sdb Files During Unattended Installations” earlier in this chapter. Save the file in the Sysprep folder on your master installation.

4. Specify the path to your Cmdlines.txt file by configuring the InstallFilesPath entry in the [Unattended] section in your Sysprep.inf file.

5. Create and configure the [GuiRunOnce] section of your Sysprep.inf file in the same way you created and configured the [GuiRunOnce] section of your unattended installation answer file. For more information about configuring the [GuiRunOnce] section of Sysprep.inf, see “Deploying Applications and .Sdb Files During Unattended Installations” earlier in this chapter.

6. Configure any other sections and entries in your Sysprep.inf file, and save the file in the same location as Sysprep.exe and Setupcl.exe, which are usually in the systemdrive\Sysprep folder on your master installation.

7. Run the Sysprep tool on your master installation.

8. Run your disk imaging program, and save your disk image in a shared folder or on some type of removable media.

9. Use your disk imaging tool to copy the disk image to a destination computer.

This is only a summary of the tasks that you need to perform to deploy applications and .sdb files during Mini‑Setup. For more information about designing and performing an image-based installation, see “Designing Image-based Installations with Sysprep” in Automating and Customizing Installations of this kit.

Installing and Configuring Applications and .Sdb Files in Factory Mode

To install and configure applications and .sdb files by using the Factory mode feature of Sysprep:

1. Copy your application files to your master installation. Do not install the applications.

2. Copy your .sdb files to your master installation. Usually, .sdb files are saved in the systemroot\AppPatch\Custom folder, but you can save the files in any folder.

3. Create a Winbom.ini file by using Notepad or any other text editor, and save the Winbom.ini file on a floppy disk, on a CD, or in the same folder as the Factory.exe program (usually, the systemdrive\Sysprep folder).

4. Configure the [OEMRunOnce] section of the Winbom.ini file. This section contains the list of commands to be run while the computer is running in Factory mode. For example, you can attach (install) or detach (remove) applications, and run Sdbinst.exe.

5. Configure the WinbomType entry in the [Factory] section of the Winbom.ini file. This entry specifies how the Winbom.ini file is processed; it is required.

6. Run the Sysprep tool, with the /factory parameter, on your master installation.

7. Run your disk imaging program, and save your disk image in a shared folder or on some type of removable media.

8. Use your disk imaging tool to copy the disk image to a destination computer.

9. Start the destination computer.

10. After the computer processes your Winbom.ini file and installs your applications and .sdb files, run Sysprep with the /reseal parameter.

This is only a summary of the tasks that you need to perform to deploy applications and .sdb files by using the Factory mode feature of Sysprep. Although Factory mode lets you install and configure applications quickly and efficiently, using it requires substantial planning and design. For more information about planning, designing, and implementing image-based installations with Factory mode, see “Designing Image-based Installations with Sysprep” in Automating and Customizing Installations of this kit.

Deploying Applications and .Sdb Files During RIS Installations

Two methods are available for using a Remote Installation Services (RIS) server to deploy applications and .sdb files: the Risetup method, which uses Remote Installation Services setup (Risetup.exe), and the Riprep method, which uses Remote Installation Preparation Wizard (Riprep.exe). With either method, you can deploy an operating system, applications, and .sdb files across your network to destination computers throughout your organization.

Risetup

In the Risetup method, a distribution share is used to deploy an operating system, applications, and .sdb files. The distribution share is similar in structure to the distribution share that is used during an unattended installation. You can add applications and .sdb files to the distribution share, and use answer files to install the applications and .sdb files.

Riprep

In the Riprep method, disk images are used to deploy an operating system, applications, and .sdb files. The disk images are similar to the disk images that are used during an image-based installation with Sysprep, but instead of using Sysprep to prepare the master installation, you use Riprep. Riprep converts the master installation into a remote installation image that you can install on multiple destination computers.

Using the Riprep tool is the most common way to use RIS to deploy an operating system, applications, and .sdb files. It is faster than the Risetup method, and it requires less configuration after an image is copied to a destination computer.

Deploying Applications and .Sdb Files Using Riprep

To deploy applications and .sdb files using Riprep:

1. Install and configure the operating system and applications on your master installation.

2. Copy your .sdb files to your master installation. Usually, .sdb files are saved in the systemroot\AppPatch\Custom folder, but you can save the files in any folder.

3. Run Sdbinst.exe on your master installation to install and register your .sdb files.

4. Test the master installation to verify that the applications function properly and that the configuration is correct.

5. Run Remote Installation Services setup (Riprep.exe) on your master installation.

Riprep converts the master installation into a remote installation image that you can install on multiple destination computers. It also replicates the image to a RIS server, where the image is available for installation on remote-boot-enabled client computers.

Riprep configures various operating system settings on the master installation to ensure that every copy of the master installation’s disk image is unique when you install it on destination computers. For example, Riprep resets the security identifiers (SIDs). Riprep also configures the master installation so that every destination computer starts in Mini‑Setup mode.

6. Use RIS to copy the disk image to your destination computers.

Before a RIS server can deploy an operating system image to a client computer, the client computer must initiate a remote network boot. When a client computer initiates a remote network boot, it is assigned a RIS server, which downloads the disk image to the client computer.

After the disk image is downloaded to the client computer and the client computer is restarted, Mini‑Setup starts. Mini‑Setup then uses Plug and Play to detect hardware differences between the master installation and destination computers. This enables you to use a single master installation to deploy an operating system, applications, and .sdb files to destination computers that have different hardware configurations.

This is only a summary of the tasks that are required in order to deploy installed and configured applications and .sdb files using RIS. For more information about designing and performing a RIS installation, see “Designing RIS Installations” in Automating and Customizing Installations of this kit.

Distributing Applications and .Sdb Files

To distribute applications and .sdb files to computers that already have an operating system installed, you can use any of the following tools: the Group Policy Software Installation tool, logon scripts, SUS, and SMS. The tool that you use depends on several factors, such as the operating systems that you are running, your Active Directory configuration, and the design of your managed environment. With a few exceptions, no single factor determines which distribution tool you should use. This section does not provide guidance for choosing a distribution tool. It is assumed that you have already evaluated all of the factors that affect your choice of an application distribution tool, and that you have determined which tool best suits your needs.

[image: image43.wmf]
Tip

You can also distribute applications and .sdb files by writing stand-alone scripts that can be run any time (as opposed to logon scripts), and then running the scripts remotely with Windows Script Host. For information about Windows Script Host, see the Windows Script Host link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Distributing Applications and .Sdb Files Using
Group Policy Installation

You can distribute applications and .sdb files to remote computers in managed environments by using Group Policy Software Installation to assign Windows Installer packages to computers. This is the most common method of distributing applications and .sdb files in managed environments. Windows Installer packages are deployed and managed within a Group Policy object, which is, in turn, associated with an Active Directory container — either a site, a domain, or an organizational unit. Therefore, you need either to create a new Group Policy object and link it to one of these Active Directory containers or to edit an existing Group Policy object and link it to a site, domain, or organizational unit.

[image: image44.wmf]
Important

To complete this procedure, you must log on as a member of the Domain Administrators security group, the Enterprise Administrators security group, or the Group Policy Creator Owners security group.

[image: image45.wmf]
To deploy software to remote computers

1. Open the Group Policy Object Editor.

2. Do one of the following:

· To assign or publish software applications to computers, in the console tree, double-click Computer Configuration.

· To assign or publish software applications to users, in the console tree, double-click User Configuration.

3. Double-click Software Settings, and then click Software Installation.

4. Right-click Software Installation, click New, and then click Package.

5. Click the Windows Installer package that you want to assign, and then click Open.

6. In Deploy Software, click Assigned.

For information about using Group Policy, see “Group Policy” in Help and Support Center for Windows Server 2003.

Distributing Applications and .Sdb Files Using Logon Scripts

Logon scripts are batch files, programs, or scripts that can be assigned to user accounts. Logon scripts run automatically when a user logs on. A logon script can be used to configure a user’s working environment when the user logs on. It allows an administrator to influence a user’s environment without managing all aspects of it. You also can use a logon script to install applications, application updates, and .sdb files.

A logon script can be assigned to a user account or to a security group in two ways: You can assign a logon script to run on a stand-alone computer by using Group Policy, or you can assign a logon script to run on a group of computers in a site, organizational unit, or domain by using Active Directory.

If you use Group Policy to assign logon scripts on a stand-alone computer, the scripts are saved locally in the systemroot\System32\GroupPolicy\Machine\Scripts\Logon folder on each stand-alone computer. If you use Active Directory to assign logon scripts to a group of computers, the scripts are saved in the systemroot\SYSVOL\sysvol\DomainName\Scripts folder on your domain controllers. This folder is shared using the share name NETLOGON. Computers running Windows XP Professional or Windows Server 2003 look for logon scripts in this folder on the authenticating domain controller when a user logs on.

To assign a logon script to a user or group, you must be a member of the Administrators group on the local computer, or you must have been delegated the appropriate authority.

[image: image46.wmf]
To assign a logon script to a local user account or security group

1. In Control Panel, double-click Administrative Tools, and then double-click Computer Management.

2. In the console tree, double-click Local Users and Groups.

3. In the console tree, click Users or Groups.

4. Double-click the name of the user or group to whom you want to assign a logon script.

5. Click the Profile tab.

6. In the Logon script text box, enter the path and name of the logon script that you want to assign to the user or group, and then click OK.

[image: image47.wmf]
To assign a logon script to a user in Active Directory

1. In Control Panel, double-click Administrative Tools, and then double-click Active Directory Users and Computers.

2. In the console tree, click Users.

3. Double-click the name of the user to whom you want to assign the logon script.

4. Click the Profile tab.

5. In the Logon script text box, type the path and name of the logon script that you want to assign to the user, and then click OK.

For more information about configuring logon scripts, see “Logon Scripts” in Help and Support Center for Windows Server 2003.

Distributing Patches and .Sdb Files Using SUS

SUS replaces Corporate Windows Update. It provides a means for medium-sized enterprises to manage and distribute critical Windows patches. These patches resolve security vulnerabilities and stability problems with the Windows XP Professional and Windows Server 2003 operating systems. The patches also can include updates to the prepackaged databases that are installed in the systemroot\AppPatch folder. Although SUS is well suited to an Active Directory environment, Active Directory is not required in order to use SUS.

SUS provides dynamic notification and automatic distribution of critical updates to computers that are running Windows XP Professional or Windows Server 2003. In addition, only one of your computers needs to be connected to the Internet for SUS to function.

An SUS solution has three components: an SUS server, an Automated Updates client, and an Intranet-hosted Windows Update server.

An SUS server

The server component of an SUS solution is installed inside the corporate firewall. With SUS installed, the internal server can synchronize with the Windows Update Web site whenever critical updates are available. The synchronization can be automatic, or the administrator can perform it manually. After the updates are downloaded to the server that is running SUS, the administrator can decide which updates to publish. All clients that are configured to use the server that is running SUS can then install the updates.

An Automatic Updates client

The client component of a SUS solution is installed on client computers running Windows XP Professional or Windows Server 2003 so that they can connect to the internal server that is running SUS. The administrator can control which server each client computer connects to, and schedule when the client performs all installations of critical updates.

An intranet-hosted Windows Update server

This server acts as the virtual Windows Update server for client computers. It contains the synchronization service and administrative tools for managing updates. It services requests for approved updates by the client computers connected to it using the Hypertext Transfer Protocol (HTTP). This server can also host critical updates downloaded from the synchronization service and refer client computers to those updates.

For more information about configuring and deploying SUS, see the “Software Update Services Deployment” white paper, available through the Software Update Services link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources, and “Deploying Microsoft Software Update Services” in Designing a Managed Environment of this kit.

Distributing Applications and .Sdb Files Using SMS

SMS includes a software distribution feature that can automate the distribution of applications and .sdb files. By using the software distribution feature, you can centrally manage and monitor the installation of applications and .sdb files on remote computers. SMS is a Microsoft product available for purchase. For more information about SMS, see the SMS Product Information link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Additional Resources

These resources contain additional information related to this chapter.

Related Information

· “Designing a Test Environment” in this book for more information about testing.

· “Designing a Pilot Project” in this book for more information about piloting.

· “Choosing an Automated Installation Method” in Automating and Customizing Installations of this kit for information about choosing an automated deployment tool.

· “Designing Image-based Installations with Sysprep” in Automating and Customizing Installations of this kit for information about designing and performing an image-based installation.

· “Designing RIS Installations” in Automating and Customizing Installations of this kit for more information about designing and performing a RIS installation.

· “Deploying a Managed Software Environment” in Designing a Managed Environment of this kit for information about Group Policy Software Installation.

· “Deploying Microsoft Software Update Services” in Designing a Managed Environment of this kit for information about SUS.

· “Hosting Applications with Terminal Server” in Planning Server Deployments of this kit for information about application compatibility with Windows Server 2003 Terminal Server.

· The Server Roles: The Application Server link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about server application compatibility.

· The Porting 32‑bit Applications link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about porting 32‑bit applications to 64‑bit operating systems.

· The Windows Application Compatibility link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources to download the Application Compatibility Toolkit.

· The Windows Catalog link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for the Windows Catalog.

· The Windows Server Catalog link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about the Windows Server Catalog.

· The Microsoft Solutions Framework link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about assessing project constraints and risks.

· The Designed for Windows Logo Program link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

· Article number 326690 “Anonymous LDAP Operations to Active Directory Are Disabled on Windows Server 2003 Domain Controllers,” available through the Microsoft Knowledge Base link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about anonymous LDAP requests.

· Article number 314649 “Windows Server ADPREP Command Causes Mangled Attributes in Windows 2000 Forests That Contain Exchange 2000 Servers,” and article number 328661 “XADM: Running Exchange 2000 Setup with /Forestprep Switch Produces Error 0XC1037AE6,” available through the Microsoft Knowledge Base link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

· “Migrating IIS Web Sites to IIS 6.0” in Deploying Internet Information Services (IIS) 6.0 of this kit (or see “Migrating IIS Web Sites to IIS 6.0” on the Web at http://www.microsoft.com/reskit).

· The Debugging Tools link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources to download the most recent version of Debugging Tools for Windows and symbol files.

· The SMS Product Information link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about SMS.

· The Windows Installer Software Developer’s Kit (SDK) link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about creating Windows Installer packages.

· The Windows Script Host link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about Windows Script Host.

· The following white papers from the Application Compatibility Toolkit, available through the Windows Application Compatibility link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources:

· “Common Application Compatibility Issues,” for detailed information about common compatibility problems and examples of source code that you can use to avoid them.

· The “Windows Compatibility Checklist,” to help you identify test cases that verify an application’s interaction with the operating system.

· The “Windows Applications Exploratory Test Procedure,” for information about the exploratory test methodology.

· The “Programming Best Practices with Microsoft Message Queuing Services (MSMQ)” white paper, available through the Message Queuing link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about applications and MSMQ.

· The “Software Update Services Deployment” white paper, available through the Software Update Services link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about SUS.

· The “Application Deployment Using Microsoft Management Technologies” white paper, available through the Application Deployment link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources for information about choosing an application distribution tool.

Related Tools

· Application Compatibility Toolkit

Use the Application Compatibility Toolkit to test, identify, and resolve application compatibility problems. To download the Application Compatibility Toolkit, see the Windows Application Compatibility link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

· Sysprep.exe, Setupcl.exe, and Factory.exe

Use Sysprep.exe, Setupcl.exe, and Factory.exe to prepare a hard disk for disk imaging. To obtain Sysprep, open the Support\Tools folder on the Windows XP Professional or Windows Server 2003 operating system CD, and then open Deploy.cab. You can also find these tools by clicking the Windows Downloads link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

· Debugging Tools for Windows

Use the Debugging Tools for Windows to identify complex or hard-to-find application compatibility problems when you have the source code and symbol files for an application. To download the most recent version of Debugging Tools for Windows and the appropriate symbol files, see the Debugging Tools link on the Web Resources page at http://www.microsoft.com/windows/reskits/webresources.

Related Job Aids

· “Compatibility Solutions Spreadsheet” (PDP_APPA_1.xls) on the Windows Server 2003 Deployment Kit companion CD (or see “Compatibility Solutions Spreadsheet” on the Web at http://www.microsoft.com/reskit) for a spreadsheet to help you find application compatibility fixes for applications compatibility problems.

· “Windows Fundamentals Testing Checklist” (PDP_APPA_2.doc) on the Windows Server 2003 Deployment Kit companion CD (or see the “Windows Fundamentals Testing Checklist on the Web at http://www.microsoft.com/reskit) for a checklist to help you track your Windows Fundamentals tests.

Related Help Topics

For best results in identifying Help topics by title, in Help and Support Center, under the Search box, click Set search options. Under Help Topics, select the Search in title only checkbox.
· “Msiexec” in Help and Support Center for Windows Server 2003 for information about Msiexec.exe command-line syntax and usage.

· “Start” in Help and Support Center for Windows Server 2003 for more information about using the Start command to run installation programs in batch files. To find “Start” in Help and Support Center for Windows Server 2003, look under Support Tasks, click Tools, and then click Start.

· “Group Policy” in Help and Support Center for Windows Server 2003.

· “Logon Scripts” in Help and Support Center for Windows Server 2003 for information about configuring logon scripts.

· “Event Viewer Overview” in Help and Support Center for Windows Server 2003 for information about the event log and audit log.

