Navigation Lab

Objectives:

- To use coordinates (latitude and longitude) to locate geographic positions on Earth.
- To read marine charts (maps) to determine geography, distance, direction, and position.
- To use a compass rose to determine heading.
- To distinguish between magnetic and true compass headings.
- To use vectors to plot a ship's course and heading (taking into account ship and current speed and direction).

Introduction

In a "Cartesian" system, object positions are plotted on a two-dimensional (flat) grid. " X " is the horizontal measurement.
" Y " is the vertical measurement.
Any position on the grid can be stated by its x, y position. The grid is really a chart (map) and we can assign a direction (north, south, east, or west) to each axis. The position of the house in Figure 1 is stated " 2 north, 7 east." (Latitude is traditionally is stated before longitude and direction is also stated.)

The "heading" is the direction you are going. On Figure 1, the heading from the house to the shipwreck is north. The heading from the boat dock to Mt. Junk is southeast.

A "scale" for determining distances is shown on all accurate charts. Assume the distance between lines on the y-axis (the "scale") is exactly one mile (Figure 1). If true, then the distance from the house to the shipwreck is 2 miles. The distance from the house to the surfing beach is also 2 miles. (Here vertical and horizontal scales are the same. Warning horizontal and vertical are usually not the same!)

Navigation Practice

Let's go from the house to the favorite fishing spot. Draw arrows on Figure 1 (either print off the figure or draw them electronically if you know how) to indicate your progress as you complete the following navigational steps.

1. Start at the house and head northwest 5.8 miles to the boat dock.
2. Using the boat, head "due" (exactly) west 1 mile (boat speed is 5 mph).
3. Go due south 4 miles to the favorite fishing spot.

If you walk at 5 miles per hour from the house to the boat dock it will take 1 hour and 10 minutes. Total trip is 2 hours 10 minutes (1 hour to walk to the dock + 1 hour sailing time from the dock to the favorite fishing spot).

Real Earth Coordinate Systems

The Cartesian coordinate system we just described works for a flat surface but not the spherical Earth. Wrapping a flat map around a sphere simply won't work (the paper wrinkles and folds). Instead, we use a system called polar coordinates. This system covers our planet with imaginary lines called parallels and meridians (Figure 2).

Figure 2. Latitude and longitude grid lines

Real Earth Coordinate Systems

The equator is designated as the origin (starting point) for the lines of latitude.
The prime meridian (passing through Greenwich, England) is designated as the origin for the lines of longitude.

Figure 2. Latitude and longitude grid lines

Real Earth Coordinate Systems

Latitude lines make circles that parallel one another and decease in circumference toward the poles.

Longitude lines make circles having the same circumference that converge at the poles.

Great Circles divide Earth into 2 equal hemispheres (all longitude lines and the equator).

Figure 2. Latitude and longitude grid lines

Real Earth Coordinate Systems

Meridians of longitude are named by their angles from the Prime Meridian and whether they occur east or west from the Prime Meridian (Figure 3).

The International Date Line is where east meets west at $\left(180^{\circ}\right)$. This meridian passes through the Pacific Ocean.

Figure 3. Meridians of longitude

- Looking down at the North Pole

Real Earth Coordinate Systems

Parallels of latitude are measured as angles north and south from the equator ("0" parallel).

Figure 4 shows the system used to determine latitude.

Figure 4. Parallels of latitude

Determining Distance on a Globe

Q. What distance is represented by 1 longitudinal degree of arc along the equator?
A. Since there are 360 degrees around the equator (Figure 3), the length of 1 degree of arc is equal to the total length (the circumference of Earth) divided by 360.

24,900 miles $/ 360$ degrees $=69.17$ miles/degree

Figure 3. Meridians of Longitude Looking down at the North Pole

Determining Distance on a Globe

69.17 miles is not a convenient unit of measure. To simplify the measurements, mapmakers defined another unit of measurement, the nautical mile (nm).

A nautical mile is equal to $1 / 60$ th of a degree.
Therefore, 1 degree of arc along the equator equals 60 nautical miles.
The name for "freeway miles" is statute miles. 1 degree of arc $=1.15$ statute miles.

1 nautical mile $(n m)=1.15$ statute miles

Determining Distance on a Globe

1 latitudinal degree of arc is always equal to 60 nautical miles, no matter where you are on the planet (all great circles have the same circumference).

1 longitudinal degree of arc is more complex. As you proceed toward the poles, the longitude lines converge, and the distance between them decreases (at the poles it becomes zero). In other words, all parallels do not have the same circumference (Figure 5).

Figure 5. Length of one longitudinal degree at different latitudes

Determining Distance on a Globe

Because all great circles have (approximately) the same diameter as the equator,

$$
1 \text { latitudinal degree of arc always = } 60 \text { nm }
$$

Therefore, when using a scale to determine distance, always use the north south (latitudinal) scale, not the east-west (longitudinal) scale!

Pre-Lab Questions

1. Where do you end up after 2 hours and ten minutes? After following the navigational directions on page 3 ?
a. Mt. Junk
b. Nasty reef
c. Surfing beach
d. Favorite fishing spot
2. Which lines form circles having the same circumference?
a. Latitude
b. Longitude
c. Parallels
d. Meridians
e. b \& d
3. Why are the scales usually not the same for degrees of latitude and longitude?
4. One degree along a longitude line equals:
a. 1 nm
b. 1 statute mile
c. 1.15 nm
d. 1.15 statue miles
e. a \& c
